

Natural Resources Conservation Service

CONSERVATION PRACTICE STANDARD

FILTER STRIP

CODE 393

(ac)

DEFINITION

A strip or area of herbaceous vegetation that removes contaminants from overland flow.

PURPOSE

This practice is used to accomplish one or more of the following purposes-

- Reduce suspended solids and associated contaminants in runoff and excessive sediment in surface waters
- Reduce dissolved contaminant loadings in runoff
- Reduce suspended solids and associated contaminants in irrigation tailwater and excessive sediment in surface waters

CONDITIONS WHERE PRACTICE APPLIES

Filter strips are established where environmentally sensitive areas such as wellheads, streams, lakes, ponds or other water bodies need to be protected from sediment, other suspended solids, and dissolved contaminants in runoff.

CRITERIA

General Criteria Applicable to All Purposes

Overland flow entering the filter strip will be uniform sheet flow.

Concentrated flow will be dispersed before it enters the filter strip.

The filter strip will be located immediately downslope from the source area of contaminants.

The drainage area immediately above the filter strip will have a slope of one percent or greater.

The maximum gradient along the leading edge of filter strip will not exceed one-half of the up-and-down-hill slope percent immediately upslope from the filter strip **OR** 2%, whichever is less.

Filter strips will not be used as a travel lane for equipment or livestock.

<u>Additional Criteria to Reduce Dissolved Contaminants, Suspended Solids and Associated Contaminants in Runoff and Excessive Sediment in Surface Waters</u>

The filter strip will be designed to have a 10-year life span, following the procedure in Agronomy Technical Note No. 2, "Using Revised Universal Soil Loss Equation, Version 2 (RUSLE2) for the Design and Predicted Effectiveness of Vegetative Filter Strips (FVS) for Sediment," based on the amount of sediment delivery to the upper edge of the filter strip and ratio of filter strip flow length to length of flow path from the

NRCS reviews and periodically updates conservation practice standards. To obtain the current version of this standard, contact your Natural Resources Conservation Service State office or visit the Field Office Technical Guide online by going to the NRCS website at https://www.nrcs.usda.gov/ and type FOTG in the search field.

NRCS. NE

contributing area. The minimum flow length through the filter strip will be 20 feet for suspended solids and associated contaminants in runoff and 50 feet for dissolved contaminants and pathogens in runoff.

Vegetation

The filter strip will be established to permanent herbaceous vegetation consisting of a stiff stemmed, sod-forming grass or a mixture of grasses, legumes and/or other forbs where at least 60% of the mixture is a stiff stemmed, sod-forming grass.

Species selected will be-

- Able to withstand partial burial from sediment deposition.
- Tolerant of herbicides used on the area that contributes runoff to the filter strip.
- Stiff stemmed and a high stem density near the ground surface.
- Suited to current site conditions and intended uses.
- Able to achieve adequate density and vigor within an appropriate period to stabilize the site sufficiently to permit suited uses with ordinary management activities.

Plant species, rates of seeding (lbs/ac), vegetative planting (plants/ac), minimum quality of planting stock (pure live seed [PLS] or stem caliper), and method of establishment shall be specified before application. A minimum seeding rate of 40 PLS/ft² is required for the grass component of any mixture. Refer to Table 1 in NE393DP, Filter Strip Design Procedures for example mixtures and establishment criteria. Only viable, high quality seed or planting stock will be used.

Perform site preparation and seeding/planting at a time and in a manner that best ensures survival and growth of selected species. Successful establishment parameters, (e.g., minimum percent ground/ canopy cover, percent survival, stand density) will be specified before application.

Schedule planting dates during periods when soil moisture is adequate for germination and establishment. Seeding will be timed so that tillage for adjacent crop does not damage the seeded filter strip.

Where the purpose is to remove phosphorus, remove (or harvest) the filter strip aboveground biomass at least once each year.

<u>Additional Criteria to Reduce Suspended Solids and Associated Contaminants in Irrigation Tailwater and Excessive Sediment in Surface Waters</u>

Filter strip vegetation will be a small grain or other suitable annual plant.

The seeding rate shall be sufficient to ensure that the plant spacing does not exceed 4 inches (about 16–18 plants per square foot).

Establish filter strips prior to the irrigation season so that the vegetation is mature enough to filter sediment from the first irrigation.

CONSIDERATIONS

General Considerations

Filter strip width (flow length) can be increased as necessary to accommodate harvest and maintenance equipment.

Filters strips with the leading edge on the contour will function better than those with a gradient along the leading edge.

Seeding rates that establish a higher stem density than the normal density for a high-quality grass hay crop will be more effective in trapping and treating contaminants.

Organic producers should submit plans and specifications to their certifying agent for approval prior to installation, as part of the organic producer's organic system plan.

When needed, invasive plant species may be controlled through mowing, herbicides, and hand weeding.

Consideration for Reducing Suspended Solids and Associated Contaminants in Runoff Increasing the width of the filter strip beyond the minimum required will increase the potential for capturing more contaminants in runoff.

Increase Carbon Storage

Increasing the width of the filter strip beyond the minimum required will increase potential for carbon sequestration.

Considerations for Creating, Restoring or Enhancing Herbaceous Habitat for Wildlife and Beneficial Insects and Pollinators

Filter strips are often the only break in the monotony of intensively-cropped areas. The wildlife and pollinator benefits of this herbaceous cover can be enhanced by the following:

- When appropriate, use native grass species that fulfill the purpose(s) of the practice while also providing habitat for priority wildlife.
- Adding herbaceous plant species (including native forbs) to the seeding mix that are beneficial to wildlife and pollinators and are compatible for one of the listed purposes. Changing the seeding mix should not detract from the purpose for which the filter strip is established.
- Dispersed woody vegetation (shrubs) may be used to the extent it does not interfere with herbaceous vegetative growth, or operation and maintenance of the filter strip.
- Increasing the width beyond the minimum required. The additional area can increase food and cover for wildlife and pollinators. Generally, filter strips should be greater than 30 feet wide to provide wildlife benefits.
- Management activities on filter strips (mowing, burning, or light disking), should not be done more
 often than every other year with frequency dependent on geographical location to maintain the
 purpose(s) of the practice.
- Management activities should be completed outside of the primary nesting, fawning, and calving seasons (May 1 – July 15). Activities should be timed to allow for regrowth before the growing season ends.
- The planned wildlife habitat index shall be a minimum of 0.5 for the adjacent cropland in conjunction with the filter strip and other conservation practices (refer to FOTG Sec. IV – 645 – Upland Habitat Management for minimum habitat requirements).

Considerations to Maintain or Enhance Watershed Functions and Values

Filter strips may be used to enhance connectivity of corridors and noncultivated patches of vegetation within the watershed, enhance the aesthetics of a watershed, and be strategically located to reduce runoff, and increase infiltration and groundwater recharge throughout the watershed.

PLANS AND SPECIFICATIONS

Specifications for establishment and operation of this practice will be prepared for each field or treatment unit. Record the specifications using the implementation requirements document. Record seeding specifications using NE-CPA-8 Grass Seeding Job Sheet.

The specifications will identify at a minimum the following:

- Practice purpose(s).
- Length, width (width refers to flow length through the filter strip), and slope of the filter strip to accomplish the planned purpose(s).
- Plant species selection and seeding/planting/sprigging rates to accomplish the planned purpose.

- Planting dates and planting method(s).
- Specific care and handling requirements of the seed or plant material to ensure that planted materials have an acceptable rate of survival.
- Site preparation instructions sufficient to establish and grow selected species.

OPERATION AND MAINTENANCE

For the purposes of filtering contaminants and nutrients (phosphorus), permanent filter strip vegetative plantings will be harvested and removed as appropriate to encourage dense growth, maintain an upright growth habit and remove nutrients and other contaminants that are contained in the plant tissue. Refer to the Forage Harvest Management Standard (511).

Control undesired weed species, especially state-listed noxious weeds. Avoid damage to filter strip vegetation when using herbicides to control undesirable vegetation. Spot apply appropriately labeled herbicides when possible.

If Conservation Practice Standard (CPS) Prescribed Burning (Code 338) is used to manage and maintain the filter strip, an approved burn plan must be developed.

Inspect the filter strip after storm events and repair any gullies that have formed, remove unevenly deposited sediment accumulation that will disrupt sheet flow, reseed disturbed areas and take other measures to prevent concentrated flow through the filter strip.

Apply supplemental nutrients as needed to maintain the desired species composition and stand density.

Periodically regrade and reestablish the filter strip area when sediment deposition at the filter strip-field interface jeopardizes its function. Reestablish the filter strip vegetation in regraded areas, if needed.

Incidental grazing, as might occur when adjacent cropland is gleaned after harvest, is allowable; however, livestock access must be limited to an extent that maintains the proper functioning of the filter strip. The use of temporary fences may be required for this purpose.

REFERENCES

Dillaha, T.A., J.H. Sherrard, and D. Lee. 1986. Long-Term Effectiveness and Maintenance of Vegetative Filter Strips. VPI-VWRRC Bulletin 153.

Dillaha, T.A., and J.C. Hayes. 1991. A Procedure for the Design of Vegetative Filter Strips: Final Report Prepared for U.S. Soil Conservation Service.

Foster, G.R. Revised Universal Soil Loss Equation, Version 2 (RUSLE2) Science Documentation (In Draft). USDA-ARS, Washington, DC. 2005.

Renard, K.G., G.R. Foster, G.A. Weesies, D.K. McCool, and D.C. Yoder, coordinators. 1997. Predicting Soil Erosion by Water: A Guide to Conservation Planning with the Revised Universal Soil Loss Equation (RUSLE). U.S. Department of Agriculture. Agriculture Handbook 703.

Revised Universal Soil Loss Equation Version 2 (RUSLE2) Web site (checked May 2007): http://fargo.nserl.purdue.edu/rusle2 dataweb/RUSLE2 Index.htm.

M.G. Dosskey, M.J. Helmers, and D.E. Eisenhauer 2008. A Design Aid for Determining Width of Filter Strips. Journal of Soil and Water Conservation. July/Aug 2008—vol. 63, no. 4.