DEFINITION
A pipeline and appurtenances installed in an irrigation system.

SCOPE
This standard applies to underground thermoplastic pipelines ranging from \(\frac{1}{2} \) in. to 27 in. in diameter that are closed to the atmosphere and that are subject to internal pressures of 80 lb/in.\(^2\) or greater.

The standard includes the design criteria and minimum installation requirements for high-pressure, plastic irrigation pipelines and specifications for the thermoplastic pipe.

PURPOSE
To prevent erosion or loss of water quality or damage to the land, to make possible proper management of irrigation water, and to reduce water conveyance losses.

CONDITIONS WHERE PRACTICE APPLIES
All pipelines shall be planned and located to serve as an integral part of an irrigation water distribution or conveyance system designed to facilitate the conservation use and management of the soil and water resources on a farm or group of farms.

Water supplies, water quality, and rates of irrigation delivery for the area served by the pipelines shall be sufficient to make irrigation practical for the crops to be grown and the irrigation water application method to be used.

Plastic pipelines installed according to this standard shall be placed only in suitable soils where the bedding and backfill requirements can be fully met.

PLANNING CONSIDERATIONS

Water Quantity
1. Effects on components of the water budget, especially infiltration and evaporation.
2. Effects on downstream flows or aquifers that would affect other water uses or users.
3. Potential use for irrigation water management.
4. Effects of installing a pipeline on vegetation that may have been located next to the original conveyance.

Water Quality
1. Effects of installing the pipeline, replacing other types of conveyances, on channel erosion or the movement of sediment and soluble and sediment-attached substances carried by water.
2. Effects on the movement of dissolved substances into the soils and on percolation below the root zone or to ground water recharge.
3. Effects of controlled water delivery on the temperatures of water resources that could cause undesirable effects on aquatic and wildlife communities.

4. Effects on wetlands or water-related wildlife habitats.

5. Effects on the visual quality of water resources.

DESIGN CRITERIA

Working pressure and flow velocity. The minimum acceptable class of pipe shall be that having a pressure rating for water of 80 lb/in.².

The pipeline shall be designed to meet all service requirements without an operating pressure, including hydraulic transients, or static pressure at any point greater than the pressure rating of the pipe used at that point. As a safety factor against surge or water hammer, the working pressure should not exceed 72 percent of the pressure rating of the pipe, nor should the design flow velocity at system capacity exceed 5 ft/s. If either of these limits is exceeded, special consideration must be given to the flow conditions and measures taken to adequately protect the pipeline against surge.

Capacity. The design capacity of the pipeline shall be based on whichever of the following criteria is greater:

1. The capacity shall be sufficient to deliver the volume of water required to meet the peak-period consumptive use of the crop or crops to be irrigated.

2. The capacity shall be sufficient to provide an adequate stream for all methods of irrigation planned.

Friction losses. For design purposes, friction head losses shall be no less than those computed by the Hazen-Williams equation, using a roughness coefficient, c, equal to 150.

Outlets. Appurtenances required to deliver water from the pipeline to an individual sprinkler or to a lateral line of sprinklers or surface pipe located on the ground surface shall be known as outlets. Outlets shall have adequate capacity to deliver the design flow to the individual sprinkler, surface lateral line of sprinklers, or surface pipe at the design operating pressure.

Check valves. A check valve shall be installed between the pump discharge and the pipeline where backflow may occur.

Pressure-relief valves. A pressure-relief valve shall be installed between the pump discharge and the pipeline if excessive pressure can build up when all valves are closed. Pressure-relief valves shall be installed on the discharge side of the check valve where a reversal of flow may occur and at the end of the pipeline if needed to relieve surge at the end of the line.

Pressure-relief valves shall be no smaller than ¼-in. nominal size for each inch of the pipeline diameter and shall be set to open at a pressure no greater than 5 lb/in.² above the pressure rating of the pipe.

The pressure at which the valves start to open shall be marked on each pressure-relief valve. Adjustable pressure-relief valves shall be sealed or otherwise altered to prevent changing the adjustment from that marked on the valve.

Manufacturers of pressure-relief valves marketed for use under this standard shall provide capacity tables, based on performance tests, that give the discharge capacities of the valves at the maximum permissible pressure and differential pressure settings. Such tables shall be the basis for design of pressure setting and of acceptance of these valves.

Air-release valves. The three basic types of air-release valves for use on irrigation pipelines are described below:

An air-release valve, a continuously acting valve that has a small venting orifice, generally ranging between 1/16 and 3/8 in. in size. This valve releases pockets of air from the pipeline once the line is filled and under working pressure.

NHCP, NRCS
December, 1988
An air-and-vacuum valve, which has a large venting orifice, exhausts large quantities of air from the pipeline during filling and allows air to reenter the line and prevents a vacuum from forming during emptying. This type of valve is sometimes called air-vacuum-release valve or air-vent-and-vacuum-relief valve. It is not continuous acting because it does not allow further escape of air at working pressure once the valve closes.

A combination air valve is sometimes called a combination air-release and air-vacuum valve or combination air-and-vacuum-relief valve. It is continuous acting and combines the functions of both the air-release valve and the air-and-vacuum valve. Both valves are housed in one valve body.

If needed to provide positive means for air escape during filling and air entry while emptying, air-and-vacuum valves or combination air valves shall be installed at all summits, at the entrance, and at the end(s) of the pipeline. Such valves generally are needed at these locations if the line is truly closed to the atmosphere. However, they may not be needed if other features of the pipe system, such as permanently located sprinkler nozzles or other unclosed service outlets, adequately vent the particular location during filling and emptying operations.

The ratio of air-release valve diameter to pipe diameter for valves intended to release air when filling the pipe should not be less than 0.1. However, small-diameter valves may be used to limit water hammer pressures by controlling air release where control of filling velocities is questionable. Equivalent valve outlet diameter of less than 0.1 are permitted for continuously acting air release valves. Adequate vacuum relief must be provided.

Air-release valves or combination air valves shall be used as needed to permit air to escape from the pipeline while the line is at working pressure. Small orifices of these types shall be sized according to the working pressure and venting requirements recommended by the valve manufacturer.

Manufacturers of air valves marketed for use under this standard shall provide dimensional data, which shall be the basis for selection and acceptance of these valves.

Drainage. Provision shall be made for completely draining the pipeline if a hazard is imposed by freezing temperatures, drainage is recommended by the manufacturer of the pipe, or drainage of the line is specified, for the job. If provisions for drainage are required drainage outlets shall be located at all low places in the line. These outlets may drain into dry wells or to points of lower elevation. If drainage cannot be provided by gravity, provisions shall be made to empty the line by pumping or by other means.

Flushing. If provisions are needed for flushing the line free of sediment or other foreign material, a suitable valve shall be installed at the distal end of the pipeline.

Thrust control. Abrupt changes in pipeline grade, horizontal alignment, or reduction in pipe size normally require an anchor or thrust blocks to absorb any axial thrust of the pipeline. Thrust control may also be needed at the end of the pipeline and at in-line control valves.

Thrust blocks and anchors must be large enough to withstand the forces tending to move the pipe, including those of momentum and pressure as well as forces due to expansion and contraction.

The pipe manufacturer’s recommendations for thrust control shall be followed. In absence of the pipe manufacturer’s requirements, the following formula must be used in designing thrust blocks:

\[
A = \frac{(98HD^2)}{B\sin(a/2)}
\]

Where:

- \(A\) = Area of thrust block required in ft
- \(H\) = Maximum working pressure in ft
- \(D\) = Inside diameter of pipe in ft
- \(B\) = Allowable passive pressure of the soil in \(\text{lb/ft}^2\)
- \(a\) = Deflection angle of pipe bend

Area of thrust blocks for dead ends and tees shall be 0.7 times the area of block required for a 90° deflection angle of pipe bend.
If adequate soil tests are not available, the passive soil pressure may be estimated from table 1.

Materials. All materials shall meet or exceed the minimum requirements indicated in “Specifications for Materials.”

PLANS AND SPECIFICATIONS

Plans and specifications for constructing high-pressure underground plastic pipeline shall be in keeping with this standard and shall describe the requirements for applying the practice to achieve its intended purposes.

Table 1. — Allowable soil bearing pressure

<table>
<thead>
<tr>
<th>Natural soil material</th>
<th>Depth of cover to center of thrust block</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2 ft</td>
</tr>
<tr>
<td>Sound bedrock</td>
<td>8,000</td>
</tr>
<tr>
<td>Dense sand and gravel mixture (assumed $\phi = 40^\circ$)</td>
<td>1,200</td>
</tr>
<tr>
<td>Dense fine to coarse sand (assumed $\phi = 35^\circ$)</td>
<td>800</td>
</tr>
<tr>
<td>Silt and clay mixture (assumed $\phi = 25^\circ$)</td>
<td>500</td>
</tr>
<tr>
<td>Soft clay and organic soils (assumed $\phi = 10^\circ$)</td>
<td>200</td>
</tr>
</tbody>
</table>