NATURAL RESOURCES CONSERVATION SERVICE
CONSERVATION PRACTICE STANDARD

IRRIGATION SYSTEM, MICROIRRIGATION
(No. and Ac.)

CODE 441

DEFINITION
An irrigation system for frequent application of small quantities of water on or below the soil surface: as drops, tiny streams or miniature spray through emitters or applicators placed along a water delivery line.

PURPOSE
This practice may be applied as part of a conservation management system to support one or more of the following purposes.

- To efficiently and uniformly apply irrigation water and maintain soil moisture for plant growth.
- To prevent contamination of ground and surface water by efficiently and uniformly applying chemicals.
- To establish desired vegetation

These systems may alternately be referred to as trickle, drip, and subsurface drip (SDI).

CONDITIONS WHERE PRACTICE APPLIES
On sites where soils and topography are suitable for irrigation of proposed crops and an adequate supply of suitable quality water is available for the intended purpose(s).

Microirrigation is suited to vineyards, orchards, field crops, windbreaks, gardens, greenhouse crops, and residential and commercial landscape systems. Microirrigation is also suited to steep slopes where other methods would cause excessive erosion, and areas where other application devices interfere with cultural operations.

Microirrigation is suited for use in providing irrigation water in limited amounts to establish desired vegetation such as windbreaks, living snow fences, riparian forest buffers, and wildlife plantings.

This practice standard applies to systems with design discharge less than 60 gal/hr at each individual lateral discharge point.

Conservation Practice Standard 442, Irrigation System, Sprinkler applies to systems with design discharge of 60 gal/hr or greater at each individual lateral discharge point.

CRITERIA
General Criteria Applicable to All Purposes
This practice must conform to all federal, state, and local laws and regulations. Laws and regulations of particular concern include those involving water rights, land use, pollution control, property easements, wetlands, preservation of cultural resources, and endangered species.

The system shall be designed to uniformly apply water and/or chemicals while maintaining soil moisture within a range for good plant growth without excessive water loss, erosion, reduction in water quality, or salt accumulation.

Microirrigation systems consist of point-source emitter (drip, trickle, and bubbler), surface or subsurface line-source emitter, basin bubbler, and spray or mini sprinkler systems.

The system shall include all irrigation appurtenances necessary for proper operation. Appurtenances shall be sized and positioned in accordance with sound engineering principles and site-specific features.

Appurtenances include but are not limited to totalizing flow measurement devices, water filtration, air vent valves, vacuum relief valves, pressure relief valve(s), water control valve(s), pressure gauges, pressure regulators, and pressure reducers.

Water Quality. The irrigation water supply shall be tested and assessed for physical, chemical, and biological quality.

Conservation practice standards are reviewed periodically and updated if needed. To obtain the current version of this standard, contact your Natural Resources Conservation Service State Office or visit the electronic Field Office Technical Guide.

NRCS, CO
November 2010
chemical and biological constituents to determine suitability and treatment requirements for use in a microirrigation system. Design and Installation of Microirrigation Systems, American Society of Agricultural Engineers (ASAE), ASAE EP405.1, February 2003, contains guidelines for chemical water treatment.

Emitter discharge rate. The design discharge rate of applicators shall be determined based on manufacturer’s data for expected operating conditions. The discharge rate shall not create runoff within the immediate application area.

For bubbler irrigation, a basin beneath the plant canopy shall be required for water control, and applications shall be confined to the basin area.

Number and spacing of emitters. The number and spacing of emitters along a lateral line shall be adequate to provide water distribution to the plant root zone and percent plant wetted area (Pw). Procedures found in National Engineering Handbook, Part 623, Section 15, Chapter 7, Trickle Irrigation, 1984 shall be used to calculate Pw.

Operating pressure. The design operating pressure shall be in accordance with published manufacturer recommendations. The system operating pressure must compensate for pressure losses through system components and field elevation effects.

Emitter manufacturing variability. The manufacturer’s coefficient of variation (Cv) shall be obtained and used to assess the acceptability of a particular product for a given application.

The Cv for emitters shall be less than 0.07.

Allowable pressure variations.

Manifold and lateral lines. Manifold and lateral lines, operating at the design pressure, shall be designed to provide discharge to any applicator in an irrigation subunit or zone operated simultaneously such that they will not exceed a total variation of the design discharge rate as specified below:

- 20 percent for deep rooted, low value crops
- 15 percent for shallow rooted, high value crops

Internal pressure shall not exceed manufacturer recommendations during any phase of operation.

Main and submain lines. Main and submain lines shall be designed to supply water to all manifold and lateral lines at a flow rate and pressure not less than the minimum design requirements of each subunit. Adequate pressure shall be provided to overcome all friction losses in the pipelines and appurtenances (valves, filters, etc.). Mains and submains shall maintain flow velocities less than 5 ft/sec during all phases of operation, unless special consideration is given to flow conditions and measures taken to adequately protect the pipe network against surge.

Main and submain lines shall be designed and installed according to criteria in NRCS Conservation Practice Standard, Irrigation Pipeline, Code 430.

Emission Uniformity. Pipe sizes for mains, submains, and laterals shall maintain subunit (zone) emission uniformity (EU) within recommended limits as determined by procedures contained in National Engineering Handbook, Part 623, Section 15, Chapter 7, Trickle Irrigation, 1984.

Filters. A filtration system (filter element, screen, strainer, or filtration) shall be provided at the system inlet. Under clean conditions, filters shall be designed for maximum head loss of 5 psi. Maximum design head loss across a filter before cleaning shall be based on manufacturer recommendations. In the absence of manufacturer data maximum permissible design head loss across a filter is 7 psi before filter cleaning is required.

The filter shall be sized to prevent the passage of solids in sizes or quantities that might obstruct the emitter openings. Filtration systems shall be designed to remove solids based on emitter manufacturer recommendations. In the absence of manufacturer data or recommendations, filtration systems shall be designed to remove solids equal to or larger than one-tenth the emitter opening diameter.

The filter system shall provide sufficient filtering capacity so that backwash time does not exceed 10% of the system operation time.
Within this 10% time period, the pressure loss across the filter shall remain within the manufacturer's specification and not cause unacceptable EU.

Filter/strainer systems designed for continuous flushing shall not have backwash rates exceeding 1.0% of the system flow rate or exceeding the manufacturer's specified operational head loss across the filter.

Air/Vacuum relief valves. Vacuum relief shall be designed and installed to prevent ingestion of soil particles if there are summits in system laterals.

For SDI systems, air release shall be installed at the summit of the main and sub-main and end of flush lines to release air upon filling of the system. Vacuum relief valves shall be installed at the high points on the main, sub-main flush lines and along the lateral lines as needed to relieve vacuum from developing during drainage and the potential plugging problem from soil being drawn into the emitters within the lateral tubing. Air/vacuum relief valves shall be installed on both sides of all block or manifold water supply control valves.

Surface microirrigation and subsurface drip irrigation systems with disposable tape may require air and vacuum relief valves at the entrance only.

Pressure regulators. Pressure regulators shall be used where topography and the type of applicator dictate their use. Pressure regulators shall not be planned to compensate for improperly designed pipelines.

System flushing. Appropriate fittings shall be installed above ground at the ends of all mains, submains, and laterals to facilitate flushing. The system shall be designed and installed to provide a minimum flow velocity of 1.5 ft/sec during flushing. During flushing submain and manifold (pipelines located downstream from a control valve) velocities shall not exceed 7 ft/sec velocity. Each manifold inlet and flushing discharge outlet shall include a pressure gauge and/or Schrader valve tap to monitor pressure drop or increase within the irrigation zone.

Small surface microirrigation systems serving windbreaks and microirrigation systems using disposable tape may not require a flushing manifold, as flushing at the end of individual laterals may be acceptable.

Criteria Applicable to Efficiently and Uniformly Apply Irrigation Water

Depth of application. Net depth of application shall be sufficient to replace the water used by the plant during the plant peak use period or critical growth stage. Gross depth of application shall be determined by using field application efficiencies consistent with the type of microirrigation system planned. Applications shall include adequate water for leaching to maintain a steady state salt balance.

System capacity. The system shall have either (1) a design capacity adequate to meet peak water demands of all crops to be irrigated in the design area, or (2) enough capacity to meet water application requirements during critical crop growth periods when less than full irrigation is planned. The rationale for using a design capacity less than peak daily irrigation water requirement shall be fully explained and agreed upon by the end user. Design capacity shall include an allowance for reasonable water losses (evaporation, runoff, and deep percolation) during application periods.

The system shall have the capacity to apply a specified amount of water to the design area within the net operation period. Minimum system design capacity shall be sufficient to deliver the specified amount of water in 90% of the time available, but not to exceed 22 hours of operation per day.

System Uniformity. Emission Uniformity (EU) in each irrigation subunit or zone shall be designed for a minimum of:

- 88 percent for deep rooted, low value crops
- 92 percent for shallow rooted, high value crops

Subsurface Drip Irrigation (SDI). Tubing depth and spacing are soil and crop dependent. Emitter line depth shall consider the auxiliary irrigation methods used for leaching, germination, and initial development. Maximum lateral line distance from the crop row shall be 24 inches for high value annual row crops, 30 inches for grain crops, and 48 inches for perennial (pasture/alfalfa), vineyard and orchard crops.
Criteria Applicable to Preventing Contamination of Ground and Surface Water

Chemigation and Chemical Water Treatment. System EU shall not be less than 88 percent where fertilizer or pesticides, or treatment chemicals are applied through the system.

Backflow prevention devices shall be provided on all microirrigation systems equipped for chemical injection.

Injectors (chemical, fertilizer or pesticides) and other automatic operating equipment shall be located and installed in accordance with manufacturer’s recommendations and include integrated back flow prevention protection.

Chemigation shall be accomplished in the minimum length of time needed to deliver the chemicals and flush the pipelines. Application amounts shall be limited to minimum amount necessary, and rate shall not exceed maximum rate recommended by chemical label.

Proper maintenance and water treatment shall be followed to prevent clogging based upon dripper and water quality characteristics.

Irrigation water supply tests shall be used to plan for addressing or avoiding chemical reactions with injected chemicals to prevent precipitate or biological plugging.

Criteria Applicable to Establishing Desired Vegetation

System capacity. The system shall have design capacity adequate to provide supplemental water at a rate that will insure survival and establishment of planned vegetation for a period of at least 3 years. The system shall have the capacity to apply the specified amount of water to the design area within the net operation period.

Gross application volume per plant shall be determined using field application efficiency consistent with the type of microirrigation system planned. If a need is indicated by water test results, applications shall include adequate water for leaching to maintain a steady state salt balance.

Microirrigation systems installed solely to deliver supplemental water for establishment of windbreaks or riparian vegetation shall be designed to deliver a minimum of eight gallons per tree or shrub per week to assist in the establishment process. Design net application volumes per plant are dependent on the species of tree or shrub and the age (first, second, or third year).

Drip lateral lines installed on the ground surface shall be placed along the plant row(s) in a serpentine pattern to allow for expansion and contraction of the line while keeping the emitter close to the tree or shrub. Above ground drip line shall be pinned or anchored to prevent the line from being dislodged or moved away from the trees or shrubs.

Windbreaks shall be planned, designed, and installed according to NRCS, Conservation Practice Standard, Windbreak-Shelterbelt Establishment, Code 380.

When lateral emitter spacing or capacities vary with each row, the laterals must be designed separately.

Considerations

In the absence of local experience field application efficiency (E) of 90% should used to estimate system capacity.

In arid climates with subsurface systems natural precipitation and/or stored soil water is sometimes inadequate to provide crop germination. Special provisions should be made for germination (i.e. portable sprinklers), or the microirrigation system should apply water at a rate sufficient to adequately wet the soil to germinate seeds or establish transplants. The depth of subsurface systems on annual crops should be limited by the ability of the system to germinate seeds, unless other provisions are made for this function.

Potential rodent damage should be considered when selecting materials and deciding on above or below ground system installation.

Chemigation may or may not be required at the same time the plant requires irrigation, which may affect the economics of chemigation. Weather conditions should be considered before applying chemicals. Pest or nutrient management planning should address proximate...
the timing and rate of chemical applications. Field shape and slope often dictate the most economical lateral direction. Laying laterals down slope can allow for longer lateral run lengths and/or lateral size reduction. Uneven topography may require use of pressure compensating emitters.

For terrain slopes steeper than 5%, lateral lines should be laid along the field contour and pressure-compensating emitters specified or pressure control devices used along downslope submains at lateral inlets.

Economic assessments of alternative designs should include equipment and installation as well as operating costs.

Longer, less frequent irrigations of windbreaks during establishment are recommended to encourage deeper root development that increases drought tolerance.

Chemicals should not be applied if rainfall is imminent.

Installation and operation of microirrigation systems have the potential to save energy as a result of reduced seasonal irrigation application, and in some situations reduced operating pressures.

As with any irrigation system, proper design, operation, and management are required to mitigate salinity issues.

PLANS AND SPECIFICATIONS

Plans and specifications for the microirrigation system shall be in keeping with this standard and shall describe the requirements for properly installing the practice to achieve its intended purpose.

OPERATION AND MAINTENANCE

An irrigation water management (IWM) plan shall be developed using criteria for practice code 449- Irrigation Water Management. That plan must include an operation schedule detailing the planned application volume and planned irrigation frequency for the designed system.

A site specific operation and maintenance (O&M) plan shall be developed and reviewed with the landowner/operator. The O&M plan shall provide specific instructions for operating and maintaining the system to ensure that it functions properly, including reference to periodic inspections and the prompt repair or replacement of damaged components.

Operation and Maintenance Plan should include but is not limited to:

- Install flow meter and monitor water application.
- Clean or backflush filters when needed.
- Flush lateral lines at least annually.
- Check applicator discharge often; replace applicators as necessary.
- Check operating pressures often; a pressure drop (or rise) may indicate problems.
- Check pressure gauges to ensure proper operation; repair/replace damaged gauges.
- Inject chemicals as required to prevent precipitate buildup and algae growth.
- Check chemical injection equipment regularly to ensure it is operating properly.
- Check and assure proper operation of backflow protection devices.

REFERENCES