Natural Resources Conservation Service

CONSERVATION PRACTICE STANDARD

POND

Code 378

(No.)

DEFINITION
A pond is a water impoundment made by constructing an embankment, by excavating a dugout, or by a combination of both.

In this standard, NRCS defines ponds constructed by the first method as embankment ponds, and those constructed by the second method as excavated ponds. Ponds constructed by both the excavation and the embankment methods are classified as embankment ponds if the depth of water impounded against the embankment at the auxiliary spillway elevation is 3 feet or more above the lowest original ground along the centerline of the embankment.

PURPOSE
A pond stores water for livestock, fish and wildlife, recreation, fire control, erosion control, flow detention, and other uses such as improving water quality.

CONDITIONS WHERE PRACTICE APPLIES
This practice applies to all excavated ponds. It also applies to embankment ponds that meet all of the criteria for low-hazard dams as listed below:

- The failure of the dam will not result in loss of life, damage to homes, commercial or industrial buildings, main highways, or railroads, or in interruption of the use or service of public utilities.
- The product of the storage times the effective height of the dam is less than 3,000 acre-feet². Storage is the capacity of the reservoir in acre-feet below the elevation of the crest of the lowest auxiliary spillway or the elevation of the top of the dam if there is no open channel auxiliary spillway. The effective height of the dam is the difference in elevation, in feet, between the lowest open channel auxiliary spillway crest and the lowest point in the original cross section taken on the centerline of the dam. If there is no open channel auxiliary spillway, use the lowest point on the top of the dam instead of the lowest open channel auxiliary spillway crest.
- The effective height of the dam is 35 feet or less.

CRITERIA

General Criteria Applicable to All Purposes
Evaluate and document the hazard classification following procedures set forth in the NRCS National Engineering Manual (NEM), Section 520.23(b), CA-Supplement.

Design a minimum sediment storage capacity equal to the design life of the structure, or provide for periodic cleanout. Protect the drainage area above the pond to prevent sedimentation from adversely affecting the design life.

NRCS reviews and periodically updates conservation practice standards. To obtain the current version of this standard, contact your Natural Resources Conservation Service State office or visit the Field Office Technical Guide. USDA is an equal opportunity provider, employer, and lender.
Design measures necessary to prevent serious injury or loss of life in accordance with requirements of NRCS National Engineering Manual (NEM), Part 503, Safety.

Seed or sod the exposed surfaces of earthen embankments, earth spillways, borrow areas, and other areas disturbed during construction in accordance with the criteria in NRCS Conservation Practice Standard (CPS) Code 342, Critical Area Planting. When necessary to provide surface protection where climatic conditions preclude the use of seed or sod, use the criteria in CPS Code 484, Mulching, to install inorganic cover material such as gravel.

Cultural resources. Evaluate the existence of cultural resources in the project area and any project impacts on such resources. Provide conservation and stabilization of archeological, historic, structural, and traditional cultural properties when appropriate.

Site conditions. Select or modify the site to allow runoff from the design storm to safety pass through (1) a natural or constructed auxiliary spillway, (2) a combination of a principal spillway and an auxiliary spillway, or (3) a principal spillway.

Select a site that has an adequate supply of water for the intended purpose via surface runoff, groundwater, or a supplemental water source. Water quality must be suitable for its intended use.

Reservoir. Provide adequate storage volume to meet user demands for all intended purposes. Account for sedimentation, season of use, evaporation loss, and seepage loss when computing the storage volume.

Water Rights. It is imperative that any owner planning to construct a facility to store runoff water be advised that the state water code requires filing for a water right, regardless of the amount of that storage.

Such a filing is made to the Water Rights Division of the California Water Resources Control Board. The Board may require a conduit or other satisfactory means to enable water to pass through the embankment or other barrier creating the storage. The requirement for a conduit cannot be prejudged. It is determined by the Board based on the circumstances of each individual situation.

It is the responsibility of the owner to file for the water rights and advise NRCS of the Board’s decision on the conduit or any other requirements. The owner should also be advised of the possible need for other local, state or federal permits.

Criteria Applicable to Embankment Ponds.

Geological investigations. Use pits, trenches, borings, and reviews of existing data or other suitable means of investigation to characterize materials within the embankment foundation, auxiliary spillway, and borrow areas, following requirements set forth in 210-NEM, Part 531, Geology, Subparts A through C. Classify soil materials using the Unified Soil Classification System (ASTM D2487).

Investigate the embankment foundation thoroughly and to the required depth to determine: 1) the depth to a competent impervious layer; 2) the ability of the foundation to withstand anticipated loading; 3) the seepage potential through the abutments and the foundation; and 4) the liquefaction and settlement potential of the foundation materials. Use criteria set forth in 210-NEM, Part 531, Geology, CA-Supplement, to evaluate seismic hazards and liquefaction potential.

If the embankment pond is planned as a cut-fill type structure, investigate the excavated portions of the planned reservoir area to determine excavatability and the ability of the reservoir to hold water without
excessive seepage. Extend the exploratory auger holes, pits, or boreholes at least one foot below the lowest expected grade.

If an earthen auxiliary spillway is planned, determine and document: 1) the potential for the spillway to erode; 2) excavatability; 3) the suitability of the material as a borrow source, as appropriate; and 4) the stability of any existing- or excavated slopes that flank the auxiliary channel, as appropriate.

Investigate the borrow area(s) to determine the quantity and suitability of available borrow material.

Embankment material. Locate the borrow site and design the borrow operation so that it does not adversely impact the stability or function of the completed structure. Compute available borrow based on the geological investigation of the borrow area. The minimum borrow volume, excluding waste, shall exceed the embankment volume by 1.3.

Foundation cutoff. Design a cutoff of relatively impervious material under the dam and up the abutments as required for preventing seepage. Locate the cutoff at, or upstream from, the centerline of the dam. Extend the cutoff deep enough to intercept flow and connect with a relatively impervious layer. Combine seepage control with the cutoff as needed. Use a cutoff bottom width adequate to accommodate the equipment used for excavation, backfill, and compaction operations. Design cutoff side slopes no steeper than one horizontal to one vertical.

Seepage control. Include seepage control if (1) foundation cutoff does not intercept pervious layers, (2) seepage could create undesired wet areas, (3) embankment stability requires seepage control, or (4) special problems require drainage for a stable dam. Control seepage by (1) foundation, abutment, or embankment filters and drains; (2) reservoir blanketing; or (3) a combination of these measures.

Top width. Table 1 provides the minimum top widths for dams of various total heights. Total height is the vertical distance between the settled top of the dam and the lowest elevation at the downstream toe.

Design a minimum width of 16 feet for one-way traffic and 26 feet for two-way traffic for the top of dams used as public roads. Design guardrails or other safety measures where necessary and follow the requirements of the responsible road authority. For dams less than 20 feet in total height, maintenance considerations or construction equipment limitations may require increased top widths from the minimum shown in Table 1.

Table 1. Minimum top width for dams.

<table>
<thead>
<tr>
<th>Total height of dam (feet)</th>
<th>Top width (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Less than 10</td>
<td>8</td>
</tr>
<tr>
<td>10–19.9</td>
<td>10</td>
</tr>
<tr>
<td>20–24.9</td>
<td>12</td>
</tr>
<tr>
<td>25–34.9</td>
<td>14</td>
</tr>
<tr>
<td>35 or more</td>
<td>15</td>
</tr>
</tbody>
</table>

Side slopes. Design each side slope with a ratio of two horizontal to one vertical or flatter. Design the sum of the upstream- and downstream-side slopes with a ratio of five horizontal to one vertical or flatter. As required, design benches or flatten side slopes to assure stability of all slopes for all loading conditions.
Slope protection. Design special measures such as berms, rock riprap, sand-gravel, soil cement, or special vegetation as needed to protect the slopes of the dam from erosion. Use NRCS Engineering Technical Release (TR) 210 56, A Guide for Design and Layout of Vegetative Wave Protection for Earth Dam Embankments, and TR-210-69, Riprap for Slope Protection against Wave Action, as applicable.

Freeboard. Design a minimum of 1.0 feet of freeboard between design high-water-flow elevation in the auxiliary spillway and the top of the settled embankment. Design a minimum 3.0 feet of elevation difference between the crest of the auxiliary spillway and the top of the settled embankment when the dam has more than a 20-acre drainage area or more than 20 feet in effective height. Design a minimum of 1.0 feet of freeboard above the peak elevation of the routed design hydrograph to the top of the settled embankment, when the pond has no auxiliary spillway.

Settlement. Increase the height of the dam by the amount needed to ensure that the settled top elevation of the dam equals or exceeds the design top elevation. Design a minimum of 5 percent of the total height of the dam associated with each dam cross section, except where detailed soil testing and laboratory analyses or experience in the area shows that a lesser amount is adequate.

Principal spillway and pipe conduit through the embankment. Design a pipe conduit with needed appurtenances through the dam, except where rock, concrete, or other types of lined spillways are used, or where a vegetated or earth spillway can safely handle the rate and duration of base flow.

Design a minimum of 0.5-feet difference between the crest elevation of the auxiliary spillway and the crest elevation of the principal spillway when the dam has a drainage area of 20 acres or less. Design a minimum of 1.0-foot difference when the dam has a drainage area of over 20 acres.

Provide an antivortex device for a pipe conduit designed for pressure flow. Design the inlet and outlet to function for the full range of flow and hydraulic head anticipated.

Design adequate pipe conduit capacity to discharge long-duration, continuous, or frequent flows without causing flow through the auxiliary spillway. Design a principal spillway pipe with a minimum inside diameter of 4 inches. Design pipe with a minimum inside diameter of 1-1/4 inches for water supply pipes or for pipes used for any other purpose.

Design and install pipe conduits to withstand all external and internal loads without yielding, buckling, or cracking. Design rigid pipe for a positive projecting condition. Design flexible pipe conduits in accordance with the requirements of NRCS National Engineering Handbook (NEH), Part 636, Chapter 52, Structural Design of Flexible Conduits.

Design connections of flexible pipe to rigid pipe or other structures to accommodate differential movements and stress concentrations. Design and install all pipe conduits to be watertight using couplings, gaskets, caulking, water stops, or welding. Design joints to remain watertight under all internal and external loading including pipe elongation due to foundation settlement.

Design a concrete cradle or bedding for pipe conduits if needed to reduce or limit structural loading on pipe and improve support of the pipe.

Design outlet structures, such as cantilever pipe outlet sections and impact basins, to dissipate energy as needed.

In lieu of a specific design for strength requirements for pipe for polyvinyl chloride (PVC), steel and aluminum pipe, follow specifications in Tables 2 and 3.
Table 2. - Acceptable PVC pipe for use in earth dams

<table>
<thead>
<tr>
<th>Nominal pipe size (inches)</th>
<th>Schedule for standard dimension ratio (SDR)</th>
<th>Max. depth fill over pipe (feet)</th>
</tr>
</thead>
<tbody>
<tr>
<td>4 or smaller</td>
<td>Schedule 40</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>Schedule 80</td>
<td>20</td>
</tr>
<tr>
<td></td>
<td>SDR 26</td>
<td>10</td>
</tr>
<tr>
<td>6, 8, 10, 12</td>
<td>Schedule 40</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>Schedule 80</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>SDR 26</td>
<td>10</td>
</tr>
</tbody>
</table>

1Polyvinyl chloride pipe, PVC 1120 or PVC 1220, conforming to ASTM-D-1785 or ASTM-D-2241

Table 3. - Minimum gage for corrugated metal pipe

<table>
<thead>
<tr>
<th>Minimum gauge for 2-2/3inch X 1/2 inch corrugations1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Minimum thickness</td>
</tr>
<tr>
<td>Fill diameter (in) of steel pipe with</td>
</tr>
<tr>
<td>height (ft) less 24 30 36 42 48 less 24 30 36 48</td>
</tr>
<tr>
<td>1-15 16 16 14 12 10 .06 .075 .075 .075</td>
</tr>
<tr>
<td>15-20 16 16 14 12 10 .06 .075 .105 .105 .135</td>
</tr>
<tr>
<td>20-25 16 16 14 12 10 10 .06 .105 .135 --3</td>
</tr>
</tbody>
</table>

1Pipe with 6-, 8-, and 10-in diameters has 1-1/2 in x 1/4 inch corrugations.

2Riveted or helical fabrication.

3Not permitted.

Pipe Conduits. Pipe conduits shall be placed through or under embankments where required for safety, for proper operation of the reservoir and spillway, or for water rights requirements.

Where a pipe conduit is to be installed, the following shall apply:

1. No valve shall be installed when the conduit serves the single purpose of carrying flow from a trickle tube riser. For secondary discharge systems, control valves shall be installed on the upstream end unless otherwise approved by the State Conservation Engineer.

2. The conduit shall be placed in a trench excavated in firm foundation or in compacted fill not more than three feet above firm foundation.

3. All pipe conduits through earth embankments shall be concrete bedded or encased in concrete as defined below:

<table>
<thead>
<tr>
<th>Embankment Minimum Treatment Height</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Concrete Pipe with Round Rubber Gasket Joints</td>
</tr>
<tr>
<td>10 feet or less 2-inch concrete bedding Up 1/3 the O.D. on both sides of the pipe centerline</td>
</tr>
<tr>
<td>10 to 25 feet 1/2 O.D. Concrete cradle</td>
</tr>
<tr>
<td>25 to 35 feet 1/2 O.D. Concrete cradle</td>
</tr>
<tr>
<td>B. Corrugated Metal Pipe and Plastic Pipe</td>
</tr>
<tr>
<td>Less than 25 feet Complete encasement</td>
</tr>
<tr>
<td>25 feet or greater CMP shall not be used</td>
</tr>
</tbody>
</table>
4. When a pipe conduit is to be encased with concrete, the trench shall be excavated to the neat lines and grades so that the bottom and two sides become suitable forms for the concrete. The maximum spacing shall not exceed 15 feet. Corrugated metal collars are not permitted.

5. The installation of trickle tubes are allowed provided the tube is buried in the embankment side slopes at a shallow depth of 1.0 feet to protect the pipe. Usually trickle tubes are installed to convey water to a trough for livestock use.

6. When cathodic protection is needed, use the procedures of Design Note 12.

Cantilever outlet sections, if used, shall be designed to withstand the cantilever load. Pipe supports shall be provided when needed. Other suitable devices such as a Saint Anthony Falls stilling basin or an impact basin may be used to provide a safe outlet.

Corrosion protection. Provide protective coatings for all steel pipe and couplings in areas that have traditionally experienced pipe corrosion or in embankments with saturated soil resistivity less than 4,000 Ohm-cm or soil pH less than 5. Protective coatings may include asphalt, polymer over galvanizing, aluminized coating, or coal tar enamel.

Ultraviolet protection. Use ultraviolet-resistant materials for all plastic pipe or provide coating or shielding to protect plastic pipe exposed to direct sunlight.

Cathodic protection. Provide cathodic protection for coated welded steel and galvanized corrugated metal pipe where soil and resistivity studies indicate that the pipe needs a protective coating and where the need and importance of the structure warrant additional protection and longevity. If the original design and installation did not include cathodic protection, consider establishing electrical continuity in the form of joint-bridging straps on pipes that have protective coatings. Add cathodic protection later if monitoring indicates the need.

Filter diaphragms. Provide filter diaphragms to control seepage on all pipes extending through the embankment with inverts below the peak elevation of the routed design hydrograph. Any exemptions will require an appropriate and documented engineering analysis to be approved by the State Conservation Engineer. Design filter diaphragms as needed to control seepage on pipes extending through all other embankments or for pipes with inverts above the peak elevation of the routed design hydrograph.

Design the filter diaphragm in accordance with the requirements of NEH, Part 628, Chapter 45, Filter Diaphragms. Locate the filter diaphragm immediately downstream of the cutoff trench, but downstream of the centerline of the dam if the foundation cutoff is upstream of the centerline or if there is no cutoff trench.

To improve filter diaphragm performance, provide a drain outlet for the filter diaphragm at the downstream toe of the embankment. Protect the outlet from surface erosion and animal intrusion.

Ensure filter diaphragm functions both as a filter for adjacent base soils and as a drain for seepage that it intercepts. Materials for the filter diaphragm shall meet the requirements of NEH Part 628, Chapter 45, Filter Diaphragms, Section 628.4503(d), Filter and Drain Gradation.

Trash guard. Install a trash guard at the riser inlet to prevent clogging of the conduit, unless the watershed does not contain trash or debris that could clog the conduit.

Pool Drain. Provide a pipe with a suitable valve to drain the pool area if needed for proper pond management or if required by State law. The designer may use the principal spillway conduit as a pond drain if it is located where it can perform this function.
Auxiliary spillways. A dam must have an open channel auxiliary spillway, unless the principal spillway is large enough to pass the peak discharge from the routed design hydrograph and the trash that comes to it without overtopping the dam. The minimum criteria for acceptable use of a closed conduit principal spillway without an auxiliary spillway consist of a conduit with a cross-sectional area of 3 feet² or more, an inlet that will not clog, and an elbow designed to facilitate the passage of trash.

Design the minimum capacity of a natural or constructed auxiliary spillway to pass the peak flow expected from a total design storm of the frequency and duration shown in table 2, less any reduction creditable to the conduit discharge and detention storage.

Design the auxiliary spillway to safely pass the peak flow through the auxiliary spillway, or route the storm runoff through the reservoir. Start the routing either with the water surface at the elevation of the crest of the principal spillway or at the water surface after 10 days’ drawdown, whichever is higher. Compute the 10-day drawdown from the crest of the auxiliary spillway or from the elevation attained from impounding the entire design storm, whichever is lower. Design the auxiliary spillway to pass the design flow at a safe velocity to a point downstream where the flow will not endanger the dam.

A constructed auxiliary spillway consists of an inlet channel, a control section, and an exit channel. Design the auxiliary spillway with a trapezoidal cross section. Locate the auxiliary spillway in undisturbed or compacted earth or in-situ rock. Design for stable side slopes for the material in which the spillway is to be constructed. Design a minimum bottom width of 10 feet for dams having an effective height of 20 feet or more.

Design a level inlet channel upstream from the control section for the distance needed to protect and maintain the crest elevation of the spillway. If necessary, curve the inlet channel upstream of the level section to fit existing topography. Design the exit channel grade in accordance with NEH Part 628, Chapter 50, Earth Spillway Design, or with equivalent procedures.

Structural auxiliary spillways. When used for principal spillways or auxiliary spillways, design chute spillways or drop spillways according to the principles set forth in NEH, Part 650, Engineering Field Handbook; and NEH, Section 5, Hydraulics; Section 11, Drop Spillways; and Section 14, Chute Spillways. Design a structural spillway with the minimum capacity required to pass the peak flow expected from a total design storm of the frequency and duration shown in table 2, less any reduction creditable to the conduit discharge and detention storage.

State Division of Dam Safety. Drawings and specifications for dams within the jurisdiction of the California Division of Safety of Dams shall also meet the requirements of that organization.

Dams within the State jurisdiction dams are:

1. Dams over 25 feet in height and with storage of 15 acre-feet or more.
2. Dams over 6 feet in height and with storage of 50 acre-feet or more.

In general the design for state-size dams will need to meet the minimum requirements for a significant or high hazard structure as outlined in Technical Release 60.

Pipe conduits must be placed through or under all embankments that are of a size to be within the jurisdiction of the California Division of Safety of Dams.
Criteria for Excavated Ponds

Geological Investigations. Investigate the excavated portions of the planned reservoir area to determine excavatability and the ability of the reservoir to hold water without excessive seepage. Extend the exploratory auger holes, pits, or boreholes at least one foot below the lowest expected grade.

Runoff. Design a minimum of 1.0 feet of freeboard above the peak elevation of the routed design hydrograph. Design a pipe and auxiliary spillway that will meet the capacity requirements of Table 4. Consider runoff flow patterns when locating the excavated pond and placing the spoil.

Side slopes. Design stable side slopes in the excavated area no steeper than one horizontal to one vertical.

Watering Ramp. When wildlife or livestock need access to stored water, use the criteria in NRCS CPS Code 614, Watering Facility, to design a watering ramp.

Inlet protection. Protect the side slopes from erosion where surface water enters the pond in a natural or excavated channel.

Excavated material. Place the material excavated from the pond so that its weight does not endanger the stability of the pond side slopes and so that the soil will not wash back into the pond by rainfall. Dispose of excavated material in one of the following ways:

- Uniformly spread to a height that does not exceed 3 feet, with the top graded to a continuous slope away from the pond.
- Uniformly place or shape reasonably well, with side slopes assuming a natural angle of repose. Place excavated material at a distance equal to the depth of the pond, but not less than 12 feet from the edge of the pond.
- Shape to a designed form that blends visually with the landscape.
- Provide for low embankment construction and leveling of surrounding landscape.
- Haul material offsite.

Table 4. Minimum auxiliary spillway capacity

<table>
<thead>
<tr>
<th>Drainage area (acre)</th>
<th>Effective height of dam (feet)</th>
<th>Detention storage (acre-feet)</th>
<th>Minimum design storm</th>
<th>Frequency (years)</th>
<th>Minimum duration (hours)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20 or less</td>
<td>20 or less</td>
<td>< than 50</td>
<td>10</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>20 or less</td>
<td>> than 20</td>
<td>< than 50</td>
<td>25</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>> than 20</td>
<td>-</td>
<td>< than 50</td>
<td>25</td>
<td>25</td>
<td>24</td>
</tr>
<tr>
<td>All others</td>
<td>-</td>
<td>-</td>
<td>50</td>
<td>50</td>
<td>24</td>
</tr>
</tbody>
</table>

1. Defined under “Conditions where Practice Applies.”
2. Select rain distribution based on climatological region.
CONSIDERATIONS

Visual resource design. Carefully consider the visual design of ponds in areas of high public visibility and those associated with recreation. The shape and form of ponds, excavated material, and plantings are to relate visually to their surroundings and to their function.

Shape the embankment to blend with the natural topography. Shape the edge of the pond so that it is generally curvilinear rather than rectangular. Shape excavated material so that the final form is smooth, flowing, and fitting to the adjacent landscape rather than angular geometric mounds. If feasible, add islands to provide visual interest and to attract wildlife.

Fish and wildlife. Locate and construct ponds to minimize the impacts to existing fish and wildlife habitat.

When feasible, retain structures such as trees in the upper reaches of the pond and stumps in the pool area. Shape upper reaches of the pond to provide shallow areas and wetland habitat.

If operations include stocking fish, use CPS Code 399, Fishpond Management.

Vegetation. Stockpile topsoil for placement on disturbed areas to facilitate revegetation.

Consider selecting and placing vegetation to improve fish habitat, wildlife habitat and species diversity.

Water quantity. Consider effects upon components of the water budget, especially—

- Effects on volumes and rates of runoff, infiltration, evaporation, transpiration, deep percolation, and groundwater recharge.
- Variability of effects caused by seasonal or climatic changes.
- Effects on downstream flows and impacts to environment such as wetlands, aquifers, and social and economic impacts to downstream uses or users.

Water quality. Consider the effects of—

- Erosion and the movement of sediment, pathogens, and soluble and sediment-attached substances that runoff carries.
- Short-term and construction-related effects of this practice on the quality of downstream watercourses.
- Water-level control on the temperatures of downstream water to prevent undesired effects on aquatic and wildlife communities.
- Wetlands and water-related wildlife habitats.
- Water levels on soil nutrient processes such as plant nitrogen use or denitrification.
- Soil water level control on the salinity of soils, soil water, or downstream water.
- Potential for earth moving to uncover or redistribute toxic materials.
- Livestock grazing adjacent to the pond. Consider fencing to keep livestock activities out of direct contact with the pond and dam.

PLANS AND SPECIFICATIONS

Prepare plans and specifications that describe the requirements for applying the practice according to this standard. As a minimum, include the following items:

- A plan view of the layout of the pond and appurtenant features
- Typical profiles and cross sections of the principal spillway, auxiliary spillway, dam, and appurtenant features as needed
- Structural drawings adequate to describe the construction requirements
- Requirements for vegetative establishment and/or mulching, as needed
- Safety features
- Site-specific construction and material requirements
OPERATION AND MAINTENANCE

Prepare an operation and maintenance plan for the operator.

As a minimum, include the following items in the operation and maintenance plan:

- Periodic inspections of all structures, earthen embankments, spillways, and other significant appurtenances
- Prompt repair or replacement of damaged components
- Prompt removal of sediment when it reaches predetermined storage elevations
- Periodic removal of trees, brush, and undesirable species
- Periodic inspection of safety components and immediate repair if necessary
- Maintenance of vegetative protection and immediate seeding of bare areas as needed

REFERENCES

USDA NRCS. Engineering Technical Releases, TR-210-60, Earth Dams and Reservoirs. Washington, DC.

USDA NRCS. NEH, Part 631, Geology. Washington, DC.

USDA NRCS. NEH, Part 633, Soil Engineering. Washington, DC.

USDA NRCS. NEH, Part 636, Structural Engineering. Washington, DC.

USDA NRCS. NEH, Part 650, Engineering Field Handbook. Washington, DC.