Conservation practice standards are reviewed periodically, and updated if needed. To obtain the current version of this standard, contact the Natural Resources Conservation Service State Office, or visit the Field Office Technical Guide.
Treatments shall be designed to account for any anticipated ice action, wave action, and fluctuating water levels.

Riprap used for streambank or shoreline protection will be sized consistent with guidelines found in the Engineering Field Handbook, Chapter 16.

Livestock traffic along treated streambanks and shorelines shall be limited to stable access points.

All disturbed areas around protective treatments shall be protected from erosion. Disturbed areas that are not to be cultivated shall be protected as soon as practical after construction.

Vegetation shall be selected that is best suited for the site conditions and achieves the intended purpose(s).

If natural revegetation will not produce adequate cover for the intended purpose, a vegetative management plan shall be prepared in accordance with NRCS conservation practice standard Critical Area Planting, Code 342.

Utilities and Permits. The landowner and/or contractor shall be responsible for locating all buried utilities in the project area, including drainage tile and other structural measures.

The landowner shall obtain all necessary permissions from regulatory agencies, including but not limited to the Illinois Department of Agriculture, US Army Corps of Engineers, US Environmental Protection Agency, Illinois Environmental Protection Agency and Illinois Department of Natural Resources – Office of Water Resources, or document that no permits are required.

Additional Criteria for Streambanks

Stream segments to be protected shall be classified according to the inventory and evaluation procedure of Technical Supplement 3C to the National Engineering Handbook, Part 654. Segments shall be evaluated for further degradation or aggradation.

A site assessment shall be performed to determine if the causes of instability are local (e.g. poor soils, high water table in banks, alignment, obstructions deflecting flows into bank, etc.) or systemic in nature (e.g. aggradation due to increased sediment from the watershed, increased runoff due to urban development in the watershed, degradation due to channel modifications, etc.). The assessment need only be of the extent and detail necessary to provide a basis for design of the bank treatments and reasonable confidence that the treatments will perform adequately for the design life of the measure.

Changes in channel alignment shall not be made without an assessment of both upstream and downstream fluvial geomorphology that evaluates the affects of the proposed alignment. The current and future discharge-sediment regime shall be based on an assessment of the watershed above the proposed channel alignment.

Bank protection treatment shall not be installed in channel systems undergoing rapid and extensive changes in bottom grade and/or alignment unless the treatments are designed to control or accommodate the changes. Bank treatment shall be constructed to a depth at or below the anticipated lowest depth of streambed scour.

If the failure mechanism is a result of the degradation or removal of riparian vegetation, stream corridor restoration shall be implemented, where feasible, (see Additional Criteria for Stream Corridor Improvement) as well as treating the banks.

- Toe erosion shall be stabilized by treatments that redirect the stream flow away from the toe or by structural treatments that armor the toe.

Where rock riprap is used for bank or toe protection, undercutting by scour shall be prevented by one of the following methods of riprap placement:

- Key riprap into the bottom of the channel to a depth equal to the design riprap thickness or 2 feet, whichever is greater, below the anticipated lowest scour line, or

Design and place riprap as Stone Toe Protection in sufficient quantity to allow for launching of material into anticipated scour while maintaining design height.

Where toe protection or other structural measures alone are inadequate to stabilize the
bank, the upper bank shall be shaped to a stable slope and vegetated, or shall be stabilized with structural or soil-bioengineering treatments.

Channel clearing to remove stumps, fallen trees, debris, and sediment bars shall only be performed when they are causing or could cause unacceptable bank erosion, flow restriction, or damage to structures. Habitat forming elements that provide cover, food, pools, and water turbulence shall be retained or replaced to the extent possible.

Treatments shall be functional and stable for the design flow and sustainable for higher flow conditions.

Treatments shall not induce an increase in natural erosion.

Treatments shall not limit stream flow access to the floodplain.

Where flooding is a concern, the effects of protective treatments shall not increase flow levels above those that existed prior to installation.

Additional Criteria for Shorelines
All revetments, bulkheads or groins are to be no higher than 3 feet above mean high water.

Structural shoreline protective treatments shall be keyed to a depth to prevent scour during low water.

For the design of structural treatments, the site characteristics below the waterline shall be evaluated for a minimum of 50 feet horizontal distance from the shoreline measured at the design water surface.

The height of the protection shall be based on the design water surface plus the computed wave height and freeboard.

When vegetation is selected as the protective treatment, a temporary breakwater shall be used during establishment when wave run up would damage the vegetation.

Additional Criteria for Stream Corridor Improvement
Stream corridor vegetative components shall be established as necessary for ecosystem functioning and stability. The appropriate composition of vegetative components is a key element in preventing excess long-term channel migration in re-established stream corridors.

The establishment of vegetation on channel banks and associated areas shall also be in accordance with conservation practice standard Critical Area Planting, Code 342.

Treatments shall be designed to achieve habitat and population objectives for fish and wildlife species or communities of concern as determined by a site-specific assessment or management plan. Objectives shall be based on the survival and reproductive needs of populations and communities, which include habitat diversity, habitat linkages, daily and seasonal habitat ranges, limiting factors and native plant communities. The type, amount, and distribution of vegetation shall be based on the requirements of the fish and wildlife species or communities of concern to the extent possible.

Treatments shall be designed to meet aesthetic objectives as determined by a site-specific assessment or management plan. Aesthetic objectives shall be based on human needs, including visual quality, noise control, and microclimate control. Construction materials, grading practices, and other site development elements shall be selected and designed to be compatible with adjacent land uses.

Treatments shall be designed to achieve recreation objectives as determined by a site-specific assessment or management plan. Safety requirements shall be based on type of human use and recreation objectives.

CONSIDERATIONS

When designing protective treatments, consideration should be given to the changes that may occur in the watershed hydrology and sedimentation over the design life of the treatments.

Consider utilizing debris removed from the channel or streambank into the treatment design when it is compatible with the intended purpose to improve benefits for fish, wildlife and aquatic systems.

Use construction materials, grading practices, vegetation, and other site development elements that minimize visual impacts and maintain or complement existing landscape uses such as pedestrian paths, climate controls, buffers, etc.
Avoid excessive disturbance and compaction of the site during installation.

Utilize vegetative species that are native and/or compatible with local ecosystems. Avoid introduced, invasive, noxious or exotic species that could become nuisances. Consider species that have multiple values such as those suited for biomass, nuts, fruit, browse, nesting, aesthetics and tolerance to locally used herbicides. Avoid species that may be alternate hosts to disease or undesirable pests. Species diversity should be considered to avoid loss of function due to species-specific pests. Species on noxious plant lists should not be used.

Select plant materials that provide habitat requirements for desirable wildlife and pollinators. The addition of native forbs and legumes to grass mixes will increase the value of plantings for both wildlife and pollinators.

Treatments that promote beneficial sediment deposition and the filtering of sediment, sediment-attached, and dissolved substances should be considered.

Consider maintaining or improving the habitat value for fish and wildlife by including treatments that provide aquatic habitat in the treatment design and that may lower or moderate water temperature and improve water quality.

Consider the need to stabilize side channel inlets and outlets and outlets of tributary streams from erosion.

Consider aquatic habitat when selecting the type of toe stabilization.

Consider maximizing adjacent wetland functions and values with the project design and minimize adverse effects to existing wetland functions and values.

Wildlife may need to be controlled during establishment of vegetative treatments. Temporary and local population control methods should be used with caution and within state and local regulations.

When appropriate, establish a buffer strip and/or diversion at the top of the bank or shoreline protection zone to help maintain and protect installed treatments, improve their function, filter out sediments, nutrients, and pollutants from runoff, and provide additional wildlife habitat.

Consider conservation and stabilization of archeological, historic, structural and traditional cultural properties when applicable.

Consider safety hazards to boaters, swimmers, or people using the shoreline or streambank when designing treatments.

Protective treatments should be self-sustaining or require minimum maintenance.

PLANS AND SPECIFICATIONS

Plans and specifications for streambank and shoreline protection shall be prepared for specific field sites based on this standard and shall describe the requirements for applying the practice to achieve its intended purpose. Plans shall include treatments to minimize erosion and sediment production during construction and provisions necessary to comply with conditions of any environmental agreements, biological opinions or other terms of applicable permits.

OPERATION AND MAINTENANCE

An operation and maintenance plan shall be prepared for use by the owner or others responsible for operating and maintaining the system. The plan shall provide specific instructions for operating and maintaining the system to insure that it functions properly. It shall also provide for periodic inspections and prompt repair or replacement of damaged components or erosion.

REFERENCES