ALABAMA SUPPLEMENTS TO THE

NATIONAL ENGINEERING FIELD HANDBOOK

CHAPTER 8. TERRACES

Contents

	PAGE
Terrace Spacing	AL8-21(1)
Spacing Affected by Cross Section	AL8-24(1)
Layout Truck method of Parallel Terrace Layout	AL8-33(1) AL8-33(1)
Design Graded Terraces with Underground Outlets Detention Time Terrace Storage Capacity Risers, Size, and Locations Detachable Plastic or Rigid Metal Risers for Underground Outlets Outlet Section of Pipe Materials Runoff Storage Sediment Storage Design Procedure-All Terraces With Underground Outlets Design Procedure-Unstable Bypass Design of the Underground Outlet Conduit Underground Outlet Installation Intake or Riser	AL8-55(1) AL8-55(1) AL8-55(1) AL8-55(1) AL8-55(2) AL8-55(2) AL8-55(4) AL8-55(4) AL8-55(6) AL8-55(6) AL8-55(6) AL8-55(7) AL8-55(7) AL8-55(8) AL8-55(8)
Design Example-Storage Terrace with Underground Outlet	AL8-55(15)
Records and Maintenance	AL8-55(18)
<u>FIGURES</u>	
Figure AL8-1 Cross section of effective cultivated length of slope	AL8-24(1) AL8-55(3) AL8-55(8) AL8-55(19) AL8-55(25)

TABLES

Table AL8-1. Terrace spacing for different farming equipment widths	AL8-24(1)
Table AL8-2. Runoff for 10-year, 24-hour rainfall.	AL8-55(5)
Table AL8-3. Sediment storage for terraces and sediment basins	AL8-55(6)
Table AL8-4. Per cent storage factor.	AL8-55(7)
Table AL8-5a. Natural storage above terrace for 14-foot front slopes	AL8-55(9)
Table AL8-5b. Natural storage above terrace for 28-foot front slopes	AL8-55(10)
Table AL8-5c. Natural storage above terrace for 3 to 1 front slopes	AL8-55(11)
Table AL8-5d. Natural storage above terrace for 2½ to 1 front slopes	AL8-55(13)

TERRACE SPACING

The maximum spacing of terraces for erosion control shall be determined by one of the following methods but does not have to be less than 90 feet:

1. Equations: V.I. = xs + y or H.I. = x(100) + y(100)

Where: V.I. = vertical interval in feet.

H.I. = horizontal interval in feet (See Conservation Practice Standard, Terraces – Code 600.

x = a variable with values from 0.4 to 0.5. South of a line struck from south Cleburne County to the southern border of Lamar County, use 0.4. Above this line use x = 0.5.

s = land slope in feet per 100 feet.

y = a variable with values from 1.0 to 4.0.

The values of "Y" generally are as follows:

y = 1.0 for soils with below average intake rates and cropping systems that provide little cover during intense rainfall periods.

y = 4.0 for soils with average or above intake rates and cropping systems that provide good cover during periods of intense rainfall.

y = 2.5 where one of the above factors is favorable and the other unfavorable.

With parallel terraces the horizontal interval is important in order to fit equipment and trips through the field. The vertical interval is used only as a means to determine horizontal interval. The vertical interval equation VI = XS = Y can be arranged to determine the horizontal interval.

For example, if the value of X is 0.5 and Y is 4, then the equation becomes VI = 0.5 S + 4.

The equation for HI can be rearranged as:

$$HI = X(100) + Y(\underline{100})$$

For the above case of X and Y, the equation for horizontal interval is

$$HI = 0.5(100) + 4(100) = 50 + 400$$

S

If the slope is 5 percent, then VI = 0.5(5) + 4 = 6.5 feet, and the

$$HI = 50 + 400 = 130$$
 feet (use 130 feet)

5

2. Table AL8-1 should be used to determine parallel terrace spacing. The horizontal spacing should not exceed 450 feet for land slopes up to 2%, 300 feet for land slopes of 2% to 4%, 200 feet for slopes of 4% to 6%, and 150 feet for slopes of 6% and over.

SPACING AFFECTED BY CROSS SECTION

The effective cultivated length of slope (Figure AL8-1) between terraces varies with the type of cross section. Spacing can be increased 10 percent for alignment or location to adjust for farm machinery and an additional 10% with underground outlets.

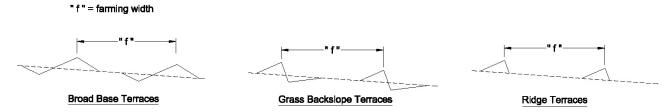


Figure AL8-1. Cross section of effective cultivated length of slope.

	Width of One Trip Across Field												
No. of	Width of Row (inches)												
Rows	30	32	34	36	38	40							
4	10' - 0"	10' - 8"	11' - 4"	12' - 0"	12' - 8"	13' - 4"							
6	15' - 0"	16' - 0"	17' - 0"	18' - 0"	19' - 0"	20' - 0"							
8	20' - 0"	21' - 4"	22' - 8"	24' - 0"	25' - 4"	26' - 8"							
12	30' - 0"	32' - 0"	34' - 0"	36' - 0"	38' - 0"	40' - 0"							
16	40' - 0"	42' - 8"	45' - 4"	48' - 0"	50' - 8"	53' - 4"							

	FARMING WIDTHS "f" FOR DIFFERENT MACHINERY SIZES (rows)												
No. of		4 Ro	ws			6 Rows				8 Rows			
Trips	30"	36"	38"	40"	30"	36"	38"	40"	30"	36"	38"	40"	
4						72'-0"	76'-0"	80'-0"	80'-0"	96"-0"	101'-4"	106'-8"	
5				66'-8"	75'-0"	90'-0"	95'-0"	100'-0"	100'-0"	120'-0	126'-8"	133'-4"	
6			76'-0"	80'-0"	90'-0"	108'-0"	114'-0"	120'-0"	120'-0"	114'-0"	152'-0"	160'-0"	
7		84'-0"	88'-8"	93'-4"	105'-0"	126'-0"	133'-0"	140'-0"	140'-0"	168'-0"	177'-4"	186'-8"	
8	80'-0"	96'-0"	101'-4"	106'-8"	120'-0"	144'-0"	152'-0"	160'-0"	160'-0"	192'-0"	202'-8"	213'-4"	
9	90'-0"	108'-0"	114'-0"	120'-0"	135'-0"	162'-0"	171'-0"	180'-0"	180'-0"	216'-0"	228'-0"	240'-0"	
10	100'-0"	120'-0"	126'-8"	133'-4"	150'-0"	180'-0"	190'-0"	200'-0"	200'-0"	240'-0"	253'-4"	266'-8"	
11	110'-0"	132'-0"	139'-4"	146'-8"	165'-0"	198'-0"	209'-0"	220'-0"	220'-0"	264'-0"	278'-8"	293'-4"	
12	120'-0"	144'-0"	152'-0"	160'-0"	180'-0"	216'-0"	228'-0"	240'-0"	240'-0"	288'-0"	304'-0"	320'-0"	
13	130'-0"	156'-0"	164'-8"	173'-4"	195'-0"	234'-0"	247'-0"	260'-0"	260'-0"	312'-0"	324'-4"	346'-8"	
14	140'-0"	168'-0"	177'-4"	186'-8"	210'-0"	252'-0"	266'-0"	280'-0"	280'-0"	336'-0"	354'-8"	373'-4"	
15	150'-0"	180'-0"	190'-0"	200'-0"	225'-0"	270'-0"	285'-0"	300'-0"	300'-0"	360'-0"	380'-0"	400'-0"	
16	160'-0"	192'-0"	202'-8"	213'-4"	240'-0"	288'-0"	304'-0"	320'-0"	320'-0"	384'-0"	405'-4"	426'-8"	
17	170'-0"	204'-0"	215'-4"	226'-8"	255'-0"	306'-0"	323'-0"	340'-0"	340'-0"	408'-0"	430'-8"		
18	180'-0"	216'-0"	228'-0"	240'-0"	270'-0"	324'-0"	342'-0"	360'-0"	360'-0"	432'-0"			
19	190'-0"	228'-0"	240'-8"	253'-4"	285'-0"	342'-0"	361'-0"	380'-0"	380'-0"				
20	200'-0"	240'-0"	253'-4"	266'-8"	300'-0"	360'-0"	380'-0"	400'-0"	400'-0"				

Table AL8-1. Terrace spacing for different farming equipment widths.

LAYOUT

<u>Truck Method for Parallel Terrace for Contour Strip Layout (Optional Method)</u>

After the key terrace is established, a truck is used to drive along that terrace with a person walking along the new parallel terrace line to be staked. One end of the tape is fastened to the truck at the front of the bed on the driver's side. The person holding the other end of the tape at the terrace interval distance starts out a few steps ahead of the truck and walks 100 feet along the new parallel terrace and stops. The driver keeps the left side of the truck following the key terrace alignment. When daylight can be seen between the truck cab and bed by the person on the new terrace, the truck is stopped. The terrace interval, perpendicular to the truck, will be correct and a station on the new terrace can be set. When fields are too wet for a truck, a small tractor or four wheeler can be used. The frame or any suitable upright reference posts can be used to get alignment. Rotation of truck driver and person on the new terrace will minimize fatigue. See Alternate Methods 1 and 2.

Alternate Method 1:

Visible 3 ft. post can be placed in the two truck bed holes at the cab or tailgate for alignment purposes. One end of the windless tape is fastened to the appropriate post, the walker then at the correct distance for the new terrace or contour strip line, walks, and marks the line keeping the tape tight and the posts in line so the terrace or contour line is laid out in perpendicular. The walker using flags marks the stations and the farmer follows the walker and marks the line with a tractor plowing with a subsoil shank. Rod readings are then taken on the new terrace or plowed strip lines as soon as two lines are staked or marked.

Alternate Method 2:

After the key terrace is established, the farmer with his tractor and planter or cultivator can simulate planting or cultivating the field above and/or below the key terrace until the spacing is reached for the next terrace. Then this terrace can be marked with terracing flags and rod reading made to determine acceptability. This procedure can be continued as long as terrace or contour line grade is acceptable.

DESIGN

Graded Terraces with Underground Outlets

An emergency bypass should be provided when possible at the edge of the field or away from the riser to reduce possibility of terrace over-topping and failure.

Detention Time

A detention time of 24 hours is recommended for most fields.

Terrace Storage Capacity

Many terraces have both natural and excavated storage. However, if sediment storage is <u>not</u> added to the total design storage requirements, only natural storage should be computed to determine the ridge height. The additional storage excavated during construction will compensate for the lack of sediment storage in most situations.

Risers, Size, and Locations

The riser shall be located at the lowest spot on the terrace profile, or the terrace must be graded to the riser in order to drain all the terrace channel. The riser shall be placed uphill from the terrace ridge a distance equal to a multiple of the equipment width (min. 8-row) so that all equipment used will pass. Spacing of the risers shall be as recommended for terrace spacing in Table 8-1 and emphasis will be on spacing for multiple of round trips. The riser should be 6 in. in diameter or larger with openings in the 5 ft. riser above ground and holes for subsurface drainage in the first four beet below ground. These holes shall be rectangular or drilled uniformly smooth and round for hydraulic efficiency using a round hole saw. The openings shall be sufficiently numerous to pass the required flow even if some are obstructed. A minimum of 12 1-in. diameter holes per linear foot or equivalent is recommended. Flexible risers should be guarded by a post (or two) in line with the rows and be marked for visibility. Risers should be attached to the post using a figure-eight wrap of galvanized wire or strap that in turn is secured to the post. The riser should be surrounded by a gravel drain fill to improve drainage. The gravel drain material needs to surround the riser in a 24-in. diameter or square column from the riser bottom to the ground surface. In "B", "C", and "D" soils, drain material is essential. Artificial filter material such as spun fiberglass, bonded nylon fabric, and plastic filter cloth will suffice in "A" soils.

An orifice plate will usually be installed to meter the desired discharge into a common conduit outlet when there are two or more terraces involved. However, since actual field conditions will impact the hydraulics of these structures, systems may be designed without orifice plates by experienced personnel with guidance from the resource engineer.

Subsurface drainage pipe should be used through wet soils for the outlet conduit, with flow in the intake risers restricted with an orifice so as to prevent pressure flow in the conduit. If sealed or continuous pipe or tubing is used for the conduit, flow shall be controlled in the risers in the upper terraces to prevent reverse flow in the risers of the lower terraces. Flow will be controlled by the use of an orifice located near the bottom of the intake riser by sizing the outlet conduit or by sizing the intake lateral. The diameter of the orifices can be determined from the following formula as shown in the design example:

Orifice Size Formula $A = Q/[C \times (2gH)^{0.5}]$

Where: A =area of orifice in ft^2

Q = discharge rate of orifice in cfs

C = coefficient = 0.60 g = 32.2 ft./sec2 H = (0.5 X d1) + d2d1 = water depth in feet

d2 = depth of orifice below ground level in feet

Note: 1 cfs = 23.802 ac.in./24 hr.

Detachable Plastic or Rigid Metal Risers for Underground Outlets

Risers for the terrace underground outlets are damaged by cattle, farm equipment and fire. Installation of detachable PVC sewer pipe risers or metal risers will limit the damage from most sources. For moving and maintenance activities the upper riser portion can be removed and then replaced. The following and installation details are required:

- 1. Thin wall PVC sewer pipe meeting ASTM D-2729 or SDR-26 PVC pipe are acceptable materials.
- 2. Above-ground risers will have a minimum 12-1 in. holes/foot for length of pipe.
- 3. Below ground riser will have 12- ¼ in. holes/foot and be surrounded by 2 ft. of concrete gravel.
- 4. PVC coupling is glued to below ground section only. Above ground section is inserted about 1 inch for ease of removal.
- 5. Joint filler or tape maybe needed between pipe and orifice plate.

Outlet Section of Pipe

The outlet shall be protected against erosion, undermining of the conduit, damage by equipment, damage during periods of submergence, and entry of rodents or other animals. A continuous 10-ft. section of non-perforated rigid pipe (plastic not recommended) with an animal guard or flap gate will be used at the outlet end of the line. The outlet should be at least 1 ft. above the normal elevation or low flow in the waterway or ditch. When satisfactory pipe cover or outlet is not available, the stilling well should be used.

(See Figure AL8-2.) The diameter of the stilling well will normally be a minimum 3X barrel diameter. If the outlet is stable for concentrated flow and a stilling well is only being installed to maintain pipe cover, the stilling well will be a minimum 2x barrel diameter. The cutout in the well will normally be 1/3 diameter and 15 in. high but may be designed using the weir flow formula: $Q = 3.1 \times L \times H^{1.5}$ where L is the length of the weir and H is the head.

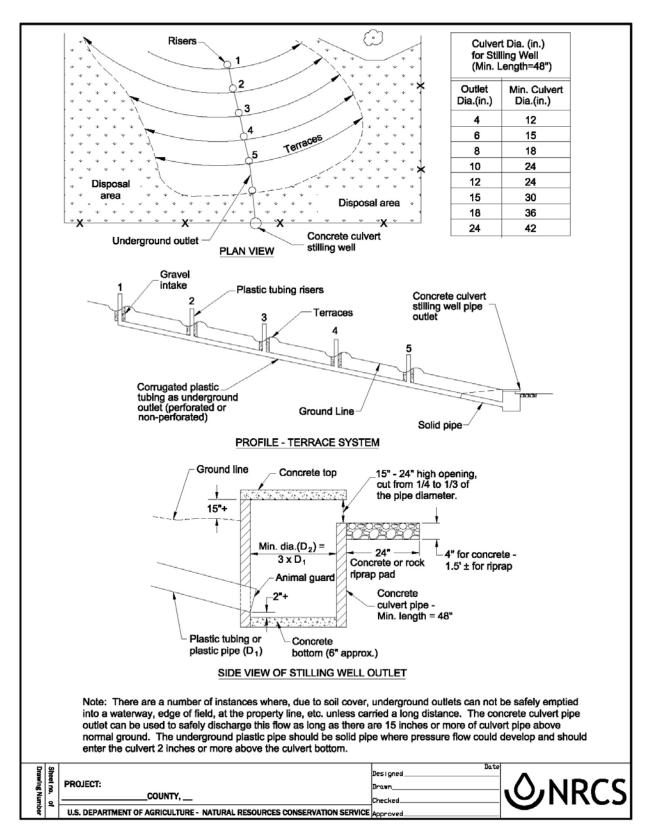


Figure AL8-2. Concrete Culvert Stilling Well for Underground Outlet.

The pipe and its installation shall conform to the following requirements:

- 1. Where there is a hazard of vegetation burning at the outlet, the outlet pipe shall be fabricated from fire resistant material. Where the hazard of burning is high, the riser outlet also shall be fire resistant.
- 2. Two-thirds or more of the 10-ft. outlet section shall be buried in the ditch bank and the cantilevered section shall extend to the toe of the ditch side slope or the side slope shall be protected from erosion.
- 3. Where floating debris may damage the outlet pipe, the outlet shall be recessed to the extent that the cantilevered portion of the pipe will be protected from the current in the ditch.
- 4. Headwalls which are used at subsurface drain outlets shall be adequate in strength and design to avoid washouts and other failures. To protect against trench erosion, use a mound of soil over the pipe.

Watertight conduit strong enough to withstand the loads upon it shall be used where outlets cross under roadways or ditches.

Materials

Pipe for the riser will be limited to corrugated or smooth plastic, steel, or aluminum. Durable smooth plastic pipe may be used provided it will withstand severe weather and temperature conditions and wear and tear from farm equipment and livestock. If corrugated plastic tubing is used for the riser, it shall be supported and protected from damage by livestock and farm equipment. When livestock is a problem, the answer may be three post set in a triangular pattern and wrapped with barbed wire. Pipe for outlet conduit section shall be clay or concrete sewer pipe, smooth steel pipe, corrugated metal pipe, asbestos cement pipe, or plastic pipe that will withstand loads applied by earth cover and heavy farm equipment. Materials shall meet strength and durability requirements of the site. Pipe materials shall conform to the specifications set forth in Conservation Practice Standard, Subsurface Drain – Code 606.

Orifice plates shall be made of metal or durable plastic that will withstand the pressure and flow of water through the riser.

Runoff Storage

Sufficient storage will be provided to protect the terrace from overtopping. The amount of storage is generally based on a 10-year frequency 24-hour storm. Calculate the runoff or use values found in Table AL8-2.

Table AL8-2. Runoff for 10-year, 24-hour rainfall.

County	Hyd	rologic	Soil Gr	oup
County	Α	В	С	D
AUTAUGA	2.70	3.80	4.54	4.87
BALDWIN	4.76	6.14	7.01	7.38
BARBOUR	2.85	3.97	4.73	5.06
BIBB	2.55	3.63	4.36	4.68
BLOUNT	2.12	3.11	3.80	4.11
BULLOCK	2.78	3.89	4.64	4.97
BUTLER	3.15	4.33	5.10	5.44
CALHOUN	2.12	3.11	3.80	4.11
CHAMBERS	2.41	3.45	4.17	4.49
CHEROKEE	2.05	3.03	3.71	4.02
CHILTON	2.55	3.63	4.36	4.68
CHOCTAW	3.00	4.15	4.92	5.25
CLARKE	3.31	4.50	5.29	5.64
CLAY	2.33	3.37	4.08	4.40
CLEBURNE	2.12	3.11	3.80	4.11
COFFEE	3.31	4.50	5.29	5.64
COLBERT	1.98	2.94	3.62	3.93
CONECUH	3.54	4.77	5.58	5.92
COOSA	2.55	3.63	4.36	4.68
COVINGTON	3.62	4.86	5.67	6.02
CRENSHAW	3.08	4.24	5.01	5.35
CULLMAN	2.12	3.11	3.80	4.11
DALE	3.08	4.24	5.01	5.35
DALLAS	2.85	3.97	4.73	5.06
DEKALB	1.91	2.86	3.53	3.83
ELMORE	2.63	3.71	4.45	4.78
ESCAMBIA	4.02	5.31	6.15	6.50
ETOWAH	2.05	3.03	3.71	4.02
FAYETTE	2.26	3.28	3.99	4.30
FRANKLIN	2.05	3.03	3.71	4.02
GENEVA	3.46	4.68	5.48	5.83
GREENE	2.63	3.71	4.45	4.78
HALE	2.63	3.71	4.45	4.78
HENRY	2.93	4.06	4.82	5.16

County	Hyd	drologic	Soil G	roup
County	Α	В	С	D
HOUSTON	3.23	4.41	5.20	5.54
JACKSON	1.85	2.78	3.44	3.74
JEFFERSON	2.33	3.37	4.08	4.40
LAMAR	2.19	3.20	3.90	4.21
LAUDERDALE	1.91	2.86	3.53	3.83
LAWRENCE	1.98	2.94	3.62	3.93
LEE	2.48	3.54	4.26	4.59
LIMESTONE	1.91	2.86	3.53	3.83
LOWNDES	2.85	3.97	4.73	5.06
MACON	2.63	3.71	4.45	4.78
MADISON	1.91	2.86	3.53	3.83
MARENGO	2.85	3.97	4.73	5.06
MARION	2.12	3.11	3.80	4.11
MARSHALL	1.98	2.94	3.62	3.93
MOBILE	4.59	5.95	6.81	7.18
MONROE	3.46	4.68	5.48	5.83
MONTGOMERY	2.78	3.89	4.64	4.97
MORGAN	1.98	2.94	3.62	3.93
PERRY	2.70	3.80	4.54	4.87
PICKENS	2.48	3.54	4.26	4.59
PIKE	2.93	4.06	4.82	5.16
RANDOLPH	2.26	3.28	3.99	4.30
RUSSELL	2.63	3.71	4.45	4.78
SHELBY	2.41	3.45	4.17	4.49
ST. CLAIR	2.19	3.20	3.90	4.21
SUMTER	2.78	3.89	4.64	4.97
TALLADEGA	2.33	3.37	4.08	4.40
TALLAPOOSA	2.48	3.54	4.26	4.59
TUSCALOOSA	2.48	3.54	4.26	4.59
WALKER	2.19	3.20	3.90	4.21
WASHINGTON	3.54	4.77	5.58	5.92
WILCOX	3.00	4.15	4.92	5.25
WINSTON	2.12	3.11	3.80	4.11

Runoff for 10-yr., 24-hr. rainfall Curve Nos. 64,75,82 and 85 for soil hydr. groups

Sediment Storage

Sediment storage needs may be estimated using the following table AL8-3 after the average annual soil loss in tons per acre has been determined for the terrace interval. Where large areas of the terrace interval will be disturbed during construction, additional sediment storage may be added to allow for the high first year accumulation. However, if construction is performed from the front and natural storage design tables are used, additional sediment storage is not required.

Table AL8-3. Sed	Table AL8-3. Sediment Storage for Terraces and Basins.									
Soil Loss Tons per acre per year	Estimated 10-year Sediment Yield Inches per Unit of Drainage Area (in.)									
1	.07									
2	.14									
3	.21									
4	.28									
5	.34									
7	.48									
10	.69									
12	.83									
15	1.03									
18	1.24									

Design Procedure - All Terraces With Underground Outlets

- 1. Determine the design area of the terrace and the required inches of storage. (See Table AL8-2.) If the available storage will be calculated using excavated plus natural storage, sediment storage must be added to the required storage. Multiply these figures to obtain the maximum volume of storage required in acre-inches.
- 2. Analyze the rod readings and determine the maximum bypass elevation that would be practical to construct. If the maximum elevation will not result in a channel (stable) bypass, the unstable bypass design procedure will be used.

Design Procedure - Unstable Bypass

If the terrace being designed will bypass over the top or onto an unstable area, the terrace should contain a 10-year, 24-hour storm. The terrace may be designed to store 100% of the storm with the pipe designed only to dewater this storage within the specified detention time (usually 24 hours) or the storage requirement may be reduced by increasing the pipe size. However, the minimum storage for a terrace with an unstable bypass shall be 33%. For terraces with less than 100% storage, the pipe shall be designed to carry the volume of storage required multiplied by a factor from Table AL8-4.

- A. If the unstable bypass design must be used, compute the natural storage in cu.ft./ft. from Table AL8-5a, b, c, or d, multiply by the distance between rod readings and divide by 3,630 to obtain the available storage in acre-inches.
- B. Compute the % stored by dividing the available storage by the volume of storage required
- C. Compute the % stored by dividing the available storage by the volume of storage required. If less than 33%, the bypass will have to be raised.
- D. Size the outlet pipe by multiplying the maximum required storage by the appropriate multiplier factor from Table AL8-4 to obtain the volume to be dewatered in 24 hours.

AL8-55(6)

Table AL8-4. Percent storage factor.							
% Storage	Multiplier Factor						
33	3.0						
35	2.9						
40	2.5						
45	2.2						
50	2.0						
55	1.8						
60	1.7						
65	1.5						
70	1.4						
75	1.3						
80	1.3						
85	1.2						
90	1.1						
95	1.1						
100	1.0						

<u>Design Procedure – Stable Bypass</u>

If the terrace being designed will bypass along the channel onto a stable area, the constructed terrace ridge height will be increased by 0.5 ft. plus 10% settlement. The pipe may be designed only to dewater the available storage within the specified detention time (usually 24 hours). However, it is highly recommended that all pipes be sized to remove the maximum required storage in 24 hours.

- A. The capacity will be based on the available storage. Compute the natural storage in cu.ft./ft. from Table AL8-5a, b, c, or d, multiply by the distance between rod readings and divide by 3,630 to obtain the available storage in acre-inches.
- B. Size the outlet pipe.

Design of the Underground Outlet Conduit

The underground outlet conduit is designed to remove the calculated volume of terrace storage in a specified time interval. The outlet conduit can be designed by either a computer program or the formula below. The underground outlet should be designed for open channel flow. The design procedure is to start with the top terrace and accumulate the volume or discharge rate of each terrace, moving downhill. The pipe sizes can be determined from the following formula as shown in the design example:

Pipe Size Formula $D = (K \times Q^{0.375})/S^{0.1875}$

Where: D = pipe diameter in inches

K = 3.4007 for corrugated tubing

K = 2.9208 for smooth Q = design outflow in cfs S = slope of pipe in ft./ft.

Note: 1 cfs = 23.802 ac.in./24 hr.

Underground Outlet Installation

Underground outlets used to dispose of impounded water from terraces are, in fact, mechanical spillways through earthen embankments. In order for these spillways to function properly and not be washed out, proper material selection, adequate moisture and good construction techniques are required. Figure AL8-3 shows details of underground conduit installation and backfill.

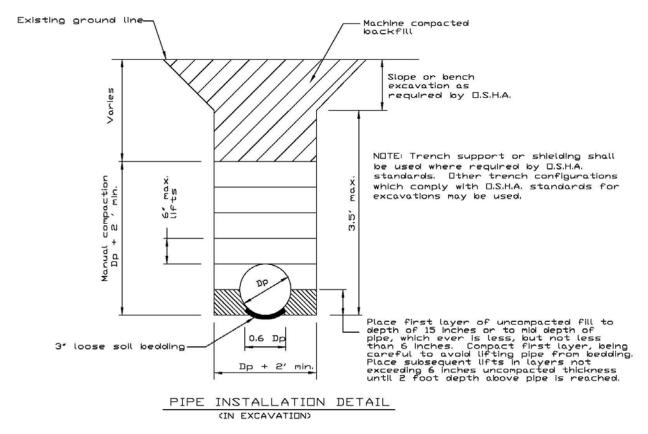


Figure AL8-3. A method of backfilling the underground conduit trench.

Intake or Riser

The riser extends above the ground and directs the flow into the underground outlet. Intakes or risers may be placed on a lateral leading to the main line. The main conduit and lateral may be of perforated conduit. The intake should be of sturdy construction and securely connected to the lateral conduit. The riser should extent to the top elevation of the terrace ridge or minimum of 3 feet. This gives a factor of safety against plugging by trash and permits operators of equipment to see them. It also permits sediment to build up gradually over the years without having to raise the riser.

٨					Land	Slope, S _L				
d	1%	2%	3%	4%	5%	6%	8%	10%	12%	14%
0.1	1	1	1	1	1	1	1	1	1	1
0.2	3	2	2	2	2	2	2	2	2	2
0.3	7	4	4	3	3	3	3	3	3	2
0.4	11	7	6	5	4	4	4	4	4	3
0.5	16	10	8	7	6	6	5	5	5	4
0.6	22	13	10	9	8	7	6	6	6	6
0.7	29	17	13	11	10	9	8	7	7	7
8.0	38	22	16	14	12	11	10	9	8	8
0.9	47	27	20	16	14	13	11	10	10	9
1.0	57	32	24	20	17	15	13	12	11	11
1.1	68	38	28	23	20	18	15	14	13	12
1.2	80	44	32	26	23	20	17	16	14	14
1.3	94	51	37	30	26	23	20	18	16	15
1.4	108	59	43	34	29	26	22	20	18	17
1.5	123	67	48	39	33	29	25	22	20	19
1.6	139	75	54	43	37	33	27	24	22	20
1.7	156	84	60	48	41	36	30	26	24	22
1.8	175	94	67	53	45	40	33	29	26	24
1.9	194	104	74	58	49	43	36	31	28	26
2.0	214	114	81	64	54	47	39	34	31	28
2.1	235	125	88	70	59	51	42	37	33	30
2.2	257	136	96	76	64	56	46	40	36	32
2.3	281	148	104	82	69	60	49	43	38	35
2.4	305	161	113	89	74	65	53	46	41	37
2.5	330	174	122	96	80	70	57	49	44	40
2.6	356	187	131	103	86	75	60	52	46	42
2.7	383	201	140	110	92	80	65	55	49	45
2.8	412	216	150	117	98	85	69	59	52	48
2.9	441	231	161	125	104	90	73	62	55	50
3.0	471	246	171	134	111	96	77	66	58	53
3.1	502	262	182	142	118	102	82	70	62	56
3.2	534	278	193	150	125	108	86	74	65	59
3.3	568	295	205	159	132	114	91	78	68	62
3.4	602	313	216	168	139	120	96	82	72	65
3.5	637	331	229	178	147	127	101	86	76	68
3.6	673	349	241	187	155	133	106	90	79	71
3.7	710	368	254	197	163	140	111	94	83	75
3.8	749	388	267	207	171	147	117	99	87	78
3.9	788	408	281	217	179	154	122	103	91	82
4.0	828	428	295	228	188	161	128	108	95	85
4.1	869	449	309	239	197	169	134	113	99	89
4.2	911	470	323	250	206	176	140	118	103	92
4.3	955	492	338	261	215	184	146	123	107	96
4.4	999	515	353	273	224	192	152	128	111	100
4.5	1044	538	369	285	234	200	158	133	116	104
4.6	1090	561	385	297	244	209	164	138	120	108

Table	Land Slope, S _L											
d	1%	2%	3%	4%	5%	6%	ope, S∟ 8%	10%	12%	14%	16%	18%
0.1	2	2	2	2	2	1	1	1	1	1	1	1
0.2	5	4	3	3	3	3	3	3	3	3	3	3
0.3	9	6	6	5	5	5	5	5	5	5	4	4
0.4	14	10	8	8	7	7	7	6	6	6	6	6
0.5	20	13	11	10	10	9	9	8	8	8	8	8
0.6	26	17	14	13	12	11	11	10	10	10	10	9
0.7	34	22	18	16	15	14	13	12	12	12	11	11
0.8	43	27	22	19	18	17	15	14	14	13	13	13
0.9	53	33	26	23	21	19	18	17	16	15	15	15
1.0	64	39	31	26	24	22	20	19	18	18	17	17
1.1	76	46	36	31	28	25	23	21	20	20	19	19
1.2	89	53	41	35	31	29	26	24	23	22	21	21
1.3	103	60	46	39	35	32	29	27	25	24	23	23
1.4	113	69	52	44	39	36	32	29	28	27	26	25
1.5	134	77	58	49	44	40	35	32	30	29	28	27
1.6	150	86	65	54	48	44	38	35	33	32	30	30
1.7	168	96	72	60	53	48	42	38	36	34	33	32
1.8	187	106	79	66	58	52	45	41	39	37	35	34
1.9	207	117	87	72	63	57	49	45	42	40	38	37
2.0	228	128	95	78	68	61	53	48	45	42	40	39
2.1	250	140	103	85	74	66	57	51	48	45	43	42
2.2	273	152	111	91	79	71	61	55	51	48	46	44
2.3	297	164	120	98	85	76	65	59	54	51	49	47
2.4	322	178	130	106	91	82	70	62	58	54	52	50
2.5	348	191	139	113	98	87	74	66	61	57	54	52
2.6	374	205	149	121	104	93	79	70	65	61	58	55
2.7	402	220	159	129	111	99	83	74	68	64	61	58
2.8	431	235	170	137	118	105	88	78	72	67	64	61
2.9	461	251	181	146	125	111	93	83	76	71	67	64
3.0	492	267	192	154	132	117	98	87	80	74	70	67
3.2	557	301	215	173	147	130	109	96	87	81	77	73
3.4	626	337	240	192	163	144	120	105	96	89	84	80
3.6	698	374	266	212	180	158	131	115	104	97	91	86
3.8	775	414	294	234	198	174	143	125	113	105	98	93
4.0	856	456	323	256	216	189	156	136	123	113	106	100
4.2	941	500	353	279	235	206	169	147	132	122	114	108
4.4	1030	546	384	304	255	223	183	158	142	131	122	115
4.6	1122	593	417	329	276	241	197	170	153	140	131	123
4.8	1219	643	451	355	298	259	211	182	163	150	139	131
5.0	1320	695	487	382	320	278	226	195	174	159	148	139

- 1. Storage shown in natural storage, storage above natural ground on uphill side of the terrace. Does not include any storage which might result from excavation.
- 2. S_L slope of the land where the terrace is built.
- 3. d depth of water in the completed terrace, measured from the natural ground at the flag line to the designed bypass elevation..
- 4. This table is based entirely on a flag line placed 28 ft. uphill from the completed terrace ridge. Stated another way, peak of the terrace ridge is always built 28 ft. downhill from the flag line. These footnotes also apply to Table AL8-3a.

-1					Land S	Slope, S _L				
d	1%	2%	3%	4%	5%	6%	8%	10%	12%	14%
0.1	1	1	1	1	1	1	1	1	1	1
0.2	2	1	1	1	1	1	1	1	1	1
0.3	5	2	2	1	1	1	1	1	1	1
0.4	8	4	3	2	2	2	1	1	1	1
0.5	13	7	5	4	3	2	2	2	1	1
0.6	19	13	17	5	4	4	3	2	2	2
0.7	25	13	9	7	6	5	4	3	3	2
8.0	33	17	12	9	7	6	5	4	4	3
0.9	42	21	15	11	9	8	6	5	5	4
1.0	52	27	18	14	12	10	8	7	6	5
1.1	62	32	22	17	14	12	9	8	7	6
1.2	74	38	26	20	17	14	11	9	8	7
1.3	87	45	31	24	19	17	13	11	10	9
1.4	101	52	36	27	23	19	15	13	11	10
1.5	116	60	41	32	26	22	17	15	13	11
1.6	132	68	47	36	29	25	20	17	15	13
1.7	149	77	53	40	33	28	22	19	16	15
1.8	167	86	59	45	37	32	25	21	18	16
1.9	186	96	66	51	42	35	28	23	20	18
2.0	206	106	73	56	46	39	31	26	23	20
2.1	227	117	80	62	51	43	34	29	25	22
2.2	249	128	88	68	56	48	38	31	27	25
2.3	272	140	96	74	61	52	41	34	30	27
2.4	297	153	105	81	66	57	45	37	33	29
2.5	322	166	114	88	72	61	48	41	35	32
2.6	348	179	123	95	78	66	52	44	38	34
2.7	375	193	132	102	84	72	56	47	41	37
2.8	404	208	142	110	90	77	61	51	44	40
2.9	443	223	153	118	97	83	65	55	48	43
3.0	464	239	164	126	104	89	70	59	51	46
3.1	495	255	175	135	111	94	74	62	54	49
3.2	527	271	186	143	118	101	79	67	58	52
3.3	561	289	198	152	125	107	84	71	62	55
3.4	595	306	210	162	133	114	90	75	66	59
3.5	631	325	223	172	141	120	95	80	69	62
3.6	667	343	235	181	149	127	100	84	73	66
3.7	705	363	249	192	157	135	106	89	78	69
3.8	744	383	262	202	166	142	112	94	82	73
3.9	783	403	276	213	175	150	118	99	86	77
4.0	824	428	291	224	184	157	124	104	91	81
4.2	908	467	320	247	203	173	137	115	100	82
4.4	997	513	352	271	223	190	150	126	110	98
4.6	1090	561	384	296	243	208	164	138	120	107
4.8	1187	611	419	323	265	227	179	150	131	117

Storage = d² x [(50 ÷ S_L) + 1.50] where d = depth in feet S_L = land slope in %

Table A	L8-5c. Na	atural Sto	rage Abov	e Terrace			opes (cu.f	t./lin.ft.).	(con't)	
d	40/			407	Land SI			400/	400/	1 4407
	1%	2%	3%	4%	5%	6%	8%	10%	12%	14%
5.0	1288	663	454	350	288	246	194	168	142	127
5.2	1393	717	491	379	311	266	210	176	153	137
5.4	1502	773	530	408	335	287	226	190	165	148
5.6	1615	831	570	439	361	308	243	204	178	159
5.8	1732	891	611	471	387	331	261	219	191	171
6.0	1854	954	654	504	414	354	279	234	204	183
6.2	1980	1019	698	538	442	378	298	250	218	195
6.4	2109	1085	744	573	471	403	317	266	232	208
6.6	2243	1154	791	610	501	428	338	283	247	221
6.8	2381	1225	840	647	532	455	358	301	262	235
7.0	2524	1229	890	686	564	482	380	319	278	249
7.2	2670	1374	942	726	596	510	402	337	294	263
7.4	2820	1451	995	767	630	538	424	356	310	278
7.6	2975	1531	1049	809	664	568	448	375	327	293
7.8	3133	1612	1105	852	700	598	472	395	345	309
8.0	3296	1696	1163	896	736	629	496	416	363	325
8.2	3463	1782	1222	941	773	661	521	437	381	341
8.4	3634	1870	1282	988	811	694	547	459	400	358
8.6	3809	1960	1344	1035	851	727	573	481	419	375
8.8	3988	2052	1407	1084	891	761	600	503	439	393
9.0	4172	2147	1472	1134	932	797	628	527	459	411
9.2	4359	2243	1538	1185	973	832	656	550	480	429
9.4	4551	2342	1605	1237	1016	869	685	574	501	448
9.6	4746	2442	1674	1290	1060	906	714	599	522	467
9.8	4946	2545	1745	1345	1104	944	744	624	544	487
10.0	5150	2650	1817	1400	1150	983	775	650	567	507
10.2	5358	2757	1800	1457	1196	1023	806	676	590	528
10.4	5570	2866	1965	1514	1244	1064	838	703	613	543
10.6	5787	2978	2041	1576	1292	1105	871	730	637	570
10.8	6001	3091	2119	1633	1341	1147	904	758	661	592
11.0	6232	3207	2198	1694	1392	1190	938	787	686	614
11.2	6460	3324	2279	1756	1443	1233	972	815	711	636
11.4	6693	3444	2361	1819	1495	1278	1007	845	136	659
11.6	6930	3566	2445	1884	1547	1323	1043	875	763	682
11.8	7171	3690	2530	1949	1601	1369	1079	905	789	706
12.0	7416	3816	2616	2016	1656	1416	1116	936	816	730
12.2	7665	3944	2704	2084	1712	1464	1154	967	846	755

d					Land S	Slope, S _L				
u	1%	2%	3%	4%	5%	6%	8%	10%	12%	14%
0.1	1	1	1	1	1	1	1	1	1	1
0.2	2	1	1	1	1	1	1	1	1	1
0.3	5	2	2	1	1	1	1	1	1	1
0.4	8	4	3	2	2	2	1	1	1	1
0.5	13	7	4	3	3	2	2	2	1	1
0.6	18	9	6	5	4	3	3	2	2	2
0.7	25	13	9	7	6	5	4	3	3	2
8.0	33	17	11	9	7	6	5	4	3	3
0.9	42	21	15	11	9	8	6	5	4	4
1.0	52	26	18	14	11	10	8	6	5	5
1.1	62	32	22	17	14	12	9	8	7	6
1.2	74	38	26	20	16	14	11	9	8	7
1.3	87	44	30	23	19	16	13	11	9	8
1.4	100	51	35	27	22	19	15	12	11	9
1.5	115	59	40	31	25	22	17	14	12	11
1.6	131	67	46	35	29	25	19	16	14	12
1.7	148	76	52	40	33	28	22	18	16	14
1.8	166	85	58	45	36	31	24	20	18	16
1.9	185	95	65	50	41	35	27	23	20	17
2.0	205	105	72	55	45	38	30	25	22	19
2.1	226	116	79	61	50	42	33	28	24	21
2.2	248	127	87	67	54	46	36	30	26	23
2.3	271	139	95	73	60	51	40	33	29	26
2.4	295	151	103	79	65	55	43	36	31	28
2.5	320	164	112	86	70	60	47	39	34	30
2.6	346	177	121	93	76	65	51	42	37	33
2.7	374	191	131	100	82	70	55	46	39	35
2.8	402	206	140	108	88	75	59	49	42	38
2.9	431	221	151	116	95	81	63	53	46	41
3.0	461	236	161	124	101	86	38	56	49	43
3.1	493	252	172	132	108	92	72	60	52	46
3.2	525	269	183	141	115	98	77	64	55	49
3.3	558	286	195	150	123	104	82	68	59	53
3.4	592	303	207	159	130	111	87	72	63	56
3.5	628	322	219	168	138	117	92	77	66	59
3.6	664	340	232	178	146	124	97	81	70	62
3.7	702	359	245	188	154	131	103	86	74	66
3.8	740	379	259	199	162	138	108	90	78	70
3.9	780	399	273	209	171	146	114	95	82	73
4.0	820	420	287	220	180	153	120	100	87	77

Storage = d² x [(50 ÷ S_L) + 1.25] where d = depth in feet S_L = land slope in %

٨					Land S	lope, S _L				
d	1%	2%	3%	4%	5%	6%	8%	10%	12%	14%
4.2	904	463	316	243	198	169	132	110	96	85
4.4	992	508	347	266	218	186	145	121	105	98
4.6	1084	555	379	291	238	203	159	132	115	102
4.8	1181	605	413	317	259	221	173	144	125	111
5.0	1281	656	448	344	281	240	188	156	135	121
5.2	1385	710	484	372	304	259	203	169	146	130
5.4	1494	465	522	401	328	279	219	182	158	141
5.6	1607	823	562	431	353	301	235	196	170	151
5.8	1724	883	603	463	378	322	252	210	182	162
6.0	1845	945	645	495	405	345	270	225	195	174
6.2	1970	1009	689	529	432	368	288	240	208	185
6.4	2099	1075	734	563	461	393	307	256	222	197
6.6	2232	1143	780	599	490	417	327	272	236	210
6.8	2370	1214	828	636	520	443	347	289	250	223
7.0	2511	1286	878	674	551	470	368	306	265	236
7.2	2657	1361	929	713	583	497	389	324	281	250
7.4	2806	1437	981	753	616	525	411	342	297	264
7.6	2960	1516	1035	794	650	554	433	361	313	278
7.8	3118	1597	1090	837	684	583	456	380	330	293
8.0	3280	1680	1147	880	720	613	480	400	347	309
8.2	3446	1765	1205	925	756	644	504	420	364	324
8.4	3616	1852	1264	970	794	676	529	441	382	340
8.6	3790	1941	1325	1017	832	709	555	462	401	357
8.8	3969	2033	1387	1065	871	742	581	484	419	373
9.0	4151	2126	1451	1114	911	776	608	506	439	391
9.2	4338	2222	1516	1164	952	811	635	529	458	408
9.4	4528	2319	1583	1215	994	847	663	552	479	426
9.6	4723	2419	1651	1267	1037	883	691	576	499	444
9.8	4922	2521	1721	1321	1080	920	720	600	520	463
10.0	5125	2625	1792	1375	1125	958	750	625	542	482
10.2	5332	2731	1864	1481	1170	997	780	650	564	502
10.4	5543	2839	1938	1487	1217	1037	811	676	586	521
10.6	5758	2949	2013	1545	1264	1077	843	702	609	542
10.8	5978	3062	2090	1604	1312	1118	875	729	632	562
11.0	6201	3176	2168	1664	1361	1160	908	756	655	583
11.2	6429	3293	2247	1725	1411	1202	941	784	679	605
11.4	6660	3411	2328	1787	1462	1245	975	812	704	627
11.6	6896	3532	2411	1850	1514	1290	1009	841	729	649
11.8	1736	3655	2495	1915	1566	1334	1044	870	754	671
12.0	7380 7628	3780 3907	2580 2667	1980 2047	1620	1380	1080	900	780	694

DESIGN EXAMPLE - STORAGE TERRACE WITH UNDERGROUND OUTLET

Determine the total required storage and the capacity of the underground outlet for a storage type terrace in Coffee County, Alabama. The land slope is 4 percent. Easily erodible soil with good cover and cropping system. Soils are hydrologic group B. Terrace will bypass over the top.

Step 1

Determine horizontal interval:

Existing Field Slope = 4%

Broadbase and Grassed Ridge Backslope. HI = X(100) + y(100)

Use a "Y" factor of 4.0 with a good cropping system and good cover.

x = 0.4 for South Alabama, HI = 140 ft. or select from Table AL8-1.

Step 2

- A. Determine present and future equipment row widths and number of rows (conference with landowner or operator.)
- B. Determine farming width between terraces (See Table AL8-1).

NOTE: <u>Broadbase Terraces</u> - The farming width is from the top of the upper terrace ridge to the top of the lower terrace ridge.

<u>Grassed Steep Backslope Terraces</u> - The farming width is from the toe of the backslope of the upper terrace to the top of the ridge of the lower terrace.

For grassed steep front and backslope terraces, use a minimum front slope of 1.5:1. Farming width will be measured from backslope toe of the upper terrace to toe front slope of the lower terrace.

C. Determine the width of the terrace front slope.

NOTE: The width of the terrace front slope should be equal to 1 or 2 passes of future farming equipment.

Solution:

- 1. Equipment width (conference with owner and operator).
 - a. Existing equipment 6 rows, 30 in. wide
 - b. Future equipment 8 rows, 30 in. wide

Number of Equipment Trips	Present Equipment 6 row, 30 in. width (ft.)	Future 8 row, 30 in. width (ft.)
1	15	20
2	30	40

2. Farming widths (See Table 8-1).

A farming width of 120 ft. fits present and future equipment for 4 or 3 round trips.

3. Use a front slope = 20 ft. (1 pass of future farming equipment)

Step 3

Determine terrace spacing.

- A. Broadbase terrace spacing (HI) is equal to the farming width. See Figure AL8-1.
- B. Grassed steep backslope terrace spacing (HI) is equal to the farming width plus the width of the backslope. See Figure AL8-1.
- C. Grassed steep front and backslope terrace spacing (HI) is equal to the farming width plus the frontslope and backslope. See Figure AL-1.

NOTE: The HI can be increased or decreased up to 10% to fit future farm machinery and an additional 10% with underground outlets.

Solution:

- 1. Broadbase Terraces (farming width) from Table AL8-1 = 120 feet.
- 2. Grassed steep backslope terraces

```
Farming width = 120 ft.

Adjust to fit equipment = 0 ft.

Backslope width (approx.) = 6 ft.

Terrace spacing (HI) = 126 ft.
```

3. Grassed steep front and backslope terraces.

```
Farming width = 120 ft.

Adjust to fit equipment = 0 ft.

Front slope width (approx.) = 6 ft.

Terrace spacing (HI) = 132 ft.
```

Step 4

Determine storage requirements.

Total storage for terrace 500 ft. long, spacing of 120 ft.

A. Compute drainage area.

```
500 ft. terrace length
120 ft. terrace spacing
Area = 500 ft. x 120 ft. / 43,560 sf/ac = 1.38 ac.
```

B. Find runoff storage from Table AL8-2, to be 4.50 in. per unit of area.

AL8-55(16)

- C. 100% storage = 1.38 ac. x 4.50 in. = 6.21 ac.in.
- D. Assume a unstable bypass design with the minimum 33% storage.

Required minimum storage = 0.33×6.21 ac.in. = 2.05 ac.in.

Step 5 - Determine the bypass elevation that will provide the required minimum storage.

- A. Assume a bypass elevation and compute the available natural storage in cu.ft./ft. by summing the values from Table AL8-5a, b, c, or d, multiply by the distance between rod readings and divide by 3,630 to obtain the available storage in acre-inches.
- B. If less than 2.05 ac.in., the bypass will have to be raised, repeat step A.

Step 6 - Determine pipe size.

A. Calculate the required discharge in cfs for the pipe.

Using the multiplier factor of 3.0 from Table AL8-4, Q = 3.0 x 6.21 ac.in. = 18.63 ac.in. / 24 hr.

$$Q = 18.63 / 23.802 = 0.78 \text{ cfs}$$

B. Calculate the smooth pipe size from the formula on page 8-?.

D =
$$(K \times Q^{0.375})/S^{0.1875}$$
 = $(2.9208 \times 0.78^{0.375})/0.04^{0.1875}$ = 4.87 " Use minimum 6" pipe.

Step 7 – Determine orifice size (if used).

Use Formula
$$A = Q/IC \times (2\alpha H)^{0.5}$$

Use Formula
$$A = Q/[C \times (2gH)^{0.5}]$$
 $A = 0.78/[0.6 \times (64.4 \times 3)^{0.5}] = 0.0935 \text{ sf } \times 144 = 13.46 \text{ in}^2$

Calculate a round opening with area = 13.46 in²

$$13.46 \text{ in}^2 / \text{PI} = 4.28$$

13.46 in²/PI = 4.28 R =
$$4.28^{0.5}$$
 = 2.07" D = 2.07 x 2 = 4.14 in. Use 4 1/4 "Orifice

Step 8 - Note

This is an "over the top" unstable bypass terrace. The ridge elevation would be 0.5 ft.freeboard plus 10% settlement added to the bypass elevation. The ridge elevation would only be required for a short distance on either side of the pipe line. The remainder of the terrace could be built to the bypass elevation plus 10% settlement.

RECORDS AND MAINTENANCE

Engineering notes for terraces are to be recorded on Form SCE-ENG-29. Notes for storage terraces should be in accord with Figure AL8-4. When computer programs are used to design terraces, underground outlets and waterways, the printouts should be filed with the conservation plan. Notes for terraces with grassed waterways, field borders, and filter strip should be in accord with Figure AL8-5.

Terrace capacity can be maintained generally by routine plowing. There is really no satisfactory way to plow terraced land except with the two-way (reversible) plow. With this plow, soil can be thrown either to the right or to the left depending upon choice. To maintain the cross section of the terraces and the terrace interval as it was after construction, most of the area should be plowed uphill.

With the two-way plow, the front slope of each terrace should be plowed toward the ridge. The remaining area of the channel to the ridge of the next terrace generally should be plowed uphill.

Maintenance of grassed ridge and grass back terraces is much easier than conventional terraces. Trees, brush, and grass can be controlled by spraying, mowing, or burning. Grass should be fertilized occasionally to maintain vigorous sod. Heavy equipment can also be used to perform terrace construction and maintenance.

Terraces with Underground Outlets

A. Engineering Surveys for Design and Construction Layout (SCS-ENG-191 Engineering Field Book) or (SCS-ENG-29)

- Complete title page with sketch of practice location.
- 2. Show at beginning of survey; farmer's name, purpose of survey, name of practice, party members, duties, and date.
- 3. Sketch showing location of each terrace with appropriate outlets.
- 4. Profile of proposed channel of each terrace, one terrace per page.
- Profile of proposed pipe.
- 6. Concrete AL-ENG-21 or equivalent computer design for each terrace.
- Table showing required discharge, pipe slope, and pipe size for each terrace.

B. Construction and Performance Checks

(SCS-ENG-191 Engineering Field Book) or (SCS-ENG-29)

- 1. All terraces will be surveyed to determine that elevations are according to design.
- A complete profile of the channel and ridge on at least one terrace per underground outlet will be recorded. Cross-section survey of at least one terrace in the system is required. A hand level survey is acceptable for this. Critical elevations and any potential problem areas should be checked and documented prior to approval of the system.
- 3. Table showing the constructed length of each terrace and total length of all terraces if the terraces are constructed at locations other than that laid out.
- 4. Supporting statements.
 - a. condition of outlets.
 - b. General remarks about construction meeting plans and specifications along with signature and dates.

U.S. DEPARTMENT OF AGRICULTURE SOIL CONSERVATION SERVICE

							S	OIL	CO	NS	ER۱	/AT	101	I SI	ER۱	/ICI	E						
S	CE)	D	ale	9 (ÌΟ	ınt	У								D	ate	,	3/	12	/0€)	
Fi	eld	1 ()ffi	ce		0	zai	k															
		ıe)OZ		r														Ī
_	_	_	_				υp			i	of (2^	44،										r
Ų	<u> </u>	/lu	ua				or				י וע	Gu	Vι										t
_				1,	/II \	310	OI.	,															H
												_			2								H
	b						v/u			_	ur										250 0		ŀ
		_			_		3/1						on		La	yc	ut		3/	114	/0	6	L
C	on:	str	. С	he	ck	-	4/1	5/	06			O	he	r									L
ld	en	t. I	V٥		F	08	13					Fi	eld	IN	lo.	1							
					T	12	57																
																							Ī
	N																						Ē
w-	1		_	- C	э. F	₹d. :	32 -	10	ni.		Co.	Rd	. 26	Т		Ne	w F	Ю	9-2	2.5 ≀	nl	=	F
-	Ţ													*		Г	Re	S.					t
														*		×	v	×	×	×			H
		ile												7		^	^	2	^	^			H
_		· <u>∠</u>	00														/			_	•	~^	ļ
															<u>چ</u>				/		۲,	_	ļ
										_					,	Ò				کم			L
							Ter	rac	<u> 17</u>	<u>ا : د</u>						Ì	1/1		į	5			
					Ī													11	5				
					-	_1	en	3CE	119		J		*		×		* -	غو	*				Г
				-*-		*	y		>	_				مہ	~	~	\sim	Wa	ods				r
						Pa:	stun	9					کر										r
												,	3										t
			D -			+ ;_																	f
ᄕ	#g					tio	n: IW	1	14	n£		Ç.	ec	2	R	Т		6 I	V	R	2	4	F
		, 4	_	1/7				1/	7 (J.		_	50			- 1	_	J 1	4	'\ <u>-</u>		T 1	F
											or												L
		atio			•	_						ev					_						

SCS-ENG-28 REV. 5-75

Figure AL8-4. Terrace system with underground outlets survey notes and design.

(Sheet 1 of 6)

Station	B. S.	Н. І.	F. S or grade rod	Elev. or planned elev.	
TBM no.1	6.01	106.01		100.00	
	Rod Reading	Water depth	Storage		
0+00	7.7				
0+50	7.5				
1+00	9.0				
1+50	9.5				
2+00	10.0	0.3	3		
2+50	10.5	0.8	14		
3+00	11.0	1.3	30		
3+50	12.1	2.4	89		
4+00	11.0	1.3	30		
4+50	10.5	0.8	14		
5+00	10.0	0.3	3		
5+50	9.5		183 cu. ft. /	ft.	
6+00	9.0				
6+50	8.0				
7+00	8.3				
00 FNO 22					
CS-ENG-29 (2-80)					

John Dozier				Wise	3/12/06
Terraces w/underg	nd. out	let	Ф - Т .	Nabors	3/12/00
Dale Co., AL					
Nail in 6" Cherry tro	e in co	rner of	fence		
	Ten	race No	. 1		

U.S. Dept. of Agriculture AL-ENG-21 Natural Resources Conservation Service Rev. 5/06 **DESIGN OF UNDERGROUND OUTLET** (NOTE: References to tables and exhibits are found in the Alabama Engineering Field Design Manual, Chapter 8.) LAND SLOPE = <u>4</u> % AVG TERR SPACING = <u>120</u> FT. TERR FRONT SLOPE = <u>14</u> FT. TYPE CHANNEL___ D.A. = TER SP 120_ FT. X CHAN LGTH 600___ <u>FT.</u> = <u>1.65</u> AC. REQ STORAGE(RS) = _____4.24__ IN. (From Table AL8-2) VOL STO REQ(VSR) = <u>4.24</u> IN. X D.A. <u>1.65</u> AC. = <u>7.00</u> AC. IN. AVAIL STO(AS) = $_{183}$ $_{FT}^{3}/FT$. X $_{50}$ STA FT. = $_{2.52}$ AC. IN. BYPASS: ALONG CHAN _____ OVER TERRACE X % STOR = AS <u>2.52</u> AC. IN. ÷ VSR <u>7.00</u> AC. IN. = <u>36</u> % BYPASS EL = HI ___106.0_ - WL__9.7___ = ___96.3 RIDGE EL = BYPASS EL <u>96.3</u> + F'BRD <u>0.5</u> = <u>96.8</u> PIPE CAP = RS_4.24 IN. X 2.78 FACTOR = 11.79 IN. ["FACTOR" from Table AL8-4 for unstable bypass or % storage (expressed as decimal) for channel bypass.] PIPE SIZE = $\underline{}$ IN. MIN. DIA. NO. OF 1 IN. DIA. HOLES/FT = D.A._1.65_AC. X _PIPE CAP. 11.79 IN. = 29 USE 30 ORIFICE DIA = 4.18 IN. $H = _2.2_FT.,$ Q__0.82_ CFS, DESIGNED BY_ C. Wise_ CHECKED BY__T. Nabors_

Figure AL8-4. Terrace system with underground outlets survey notes and design.

Station	B. S.	H. I.	F. S or grade rod	Elev. or planned elev.	
		106.01			
	Rod Reading	Water depth	Storage		
0+00	12.3				
0+50	12.2				
1+00	12.0				
1+50	12.3				
2+00	12.8	0.1	1		
2+50	13.2	0.5	7		
3+00	13.5	0.8	14		
3+50	13.7	1.0	20		
4+00	14.0	1.3	30		
4+50	13.5	0.8	14		
5+00	13.0	0.3	3		
5+50	12.8	0.1	1	-	
6+00	12.7	-	90 cu. ft. /	ft.	
6+50	13.1				
SCS-ENG-2 (2-80)	9				

John Dozier (Continued)		Sam	e pa	arty	and	d da	te
(Continued)							
					Ш		
					Ш		
	Terrace No	. 2					

U.S. Dept. of Agriculture Natural Resources Conservation Service AL-ENG-21 Rev. 5/06

DESIGN OF UNDERGROUND OUTLET

(NOTE: References to tables and exhibits are found in the Alabama Engineering Field Design Manual, Chapter 8.)

LAND SLOPE = $\underline{4}$ % AVG TERR SPACING = $\underline{120}$ FT.

TERR FRONT SLOPE = <u>14</u> FT. TYPE CHANNEL_<u>V</u>

D.A. = <u>TER SP 120_ FT. X CHAN LGTH 500____ FT.</u> = <u>1.38_ AC.</u>

REQ STORAGE(RS) = _____4.24_____ IN. (From Table AL8-2)

VOL STO REQ(VSR) = <u>4.24</u> IN. X D.A. <u>1.38</u> AC. = <u>5.84</u> AC. IN.

AVAIL STO(AS) = $90 F1^3/FT$. X 50 STA FT. = 1.24 AC. IN.

BYPASS: ALONG CHAN X OVER TERRACE_____

% STOR = AS <u>1.24</u> AC. IN. ÷ VSR <u>5.84</u> AC. IN. = <u>21</u> %

BYPASS EL = HI ___106.0_ - WL__12.7 ___ = ___93.3___

RIDGE EL = BYPASS EL _93.3 + F'BRD _ 0.5 = _ 93.8 _

PIPE CAP = RS <u>4.24</u> IN. X <u>0.21</u> FACTOR = <u>0.89</u> IN. ["FACTOR" from Table AL8-4 for unstable bypass or % storage (expressed as decimal) for channel bypass.]

PIPE SIZE = __8_ IN. MIN. DIA. NO. OF 1 I

NO. OF 1 IN. DIA. HOLES/FT =

<u>D.A. 1.38 AC. X PIPE CAP. 4.21 IN. = _8.7 USE 12 _____</u>

 $H = \underline{2.6}$ FT., $Q \underline{0.34}$ CFS, ORIFICE DIA = $\underline{2.66}$ IN.

DESIGNED BY ____C. Wise ____ CHECKED BY __T. Nabors

Note: Pipe size includes Q from Terrace No. 1, used 100% of RS to size pipe.

Figure AL8-4. Terrace system with underground outlets survey notes and design.

Station	B. S.	Н. Ј.	F. S or grade rod	Elev. or planned elev.	
		106.01	gracera		
Pipe Profi	le				
0+00					
0+50	Terrace no	o. 1	+14.6	91.4	
1+00			+16.6	89.4	
1+70	Terrace no	o. 2	+19.4	86.6	
2+00			+20.6	85.4	
2+50			+22.6	83.4	
TBM no.1			6.01	100.00	100.00 o.k. G. Wise
					K. C.WIS
					0.15
	_	PIPE SIZE	REQUIRED		
Terrace No.	Ac In.	CFS	Accum. CFS	Slope	Size
1	19.5	0.82	0.82	4%	6"
2	5.9	0.34	1.16	4%	8"
Outlet			1.16	4%	8"
SCS-ENG-29 (2-80)					

John E	oz	iei	r (0	or	nt'c	1.)						,	Sa	me	p	ari	y a	an	d a	ate	Э
				H			Pi	ne	P	rof	ile										
							_	10						_							_
++-						_		, ,	.,												_
++-								12	.1												_
								14	.1												
								16	9												
																					_
								18	. 1												
								_	_												
								22	.6												
	Te	err	ac	e I	Vo.			La	vc	ut	Le	enc	nth								
		1							,	70											
		2								65	0'										
		To	ta	ı						13	50	,									
				F	ill	of	М	əte	ris	ole											
2 - 6" /	Uio	ko	nh	-					_	110	1	си	1/	ď	ar	21//	1				_
120' -						, ,	136	13				- 6						er			
80' - 8	_											- 6									_
10' - 8	_		_	_	_	ре					_	- 8	_	_	_	_					
1 - 8" 8																					
\bot																					
														L							

Figure AL8-4. Terrace system with underground outlets survey notes and design.

Station	B. S.	H. I.	F. S or grade rod	Elev. or planned elev.	
TBM no.1	7.71	107.71		100.00	
0+00	Ridge		+13.9	93.8	
0+50	rauge		. 10.9	55.6	
1+00					
1+50					
2+00					
2+50					
3+00					
3+50					
4+00					
4+50					
5+00					
5+50					
6+00	Bypass		+14.4	93.3	
6+50					
SCS-ENG-29 (2-80)					

Johr	ı D)OZ	ie	-									Ā	&	Ш	-	C.	W	ïs(•		
Terra	iCe	s	w/	un	de.	rgı	na	. c	ut	et			φ	-	Т.	Ná	abo	ors	4	1/1	5/	06
Cons	stri	JC	ioi	7 0	he	ck	St	ım	m	агу												
Dale												?										
Cha	nn	el	Ro	d							R	ide	je	Ro	d							
	14	.0											13	.0								
		.9												.9								
		3.7												.7								
		.0												3.0								
		.5											13	3.4								
		.9											13	3.5								
		5.2											13	.5 .7								
		.4											13	1.7								
	15	.7												.7								
		5.2												.8								
		.7												.8								
		.5												3.8								
		.4												1.8								
		1.8												.8								

Station	B. S.	H. I.	F. S or grade rod	Elev. or planned elev.	
		107.71	and the second s		
			-		
Distance	Rod	Rod diff.	Distance	Rod	Rod diff.
100	4.6	701	28	7.2	17 200 00
0	175	0		20724-0	2.6
4	4.8	0.2	32	5.8	1.2
8	5.3	0.7	36	4.8	0.2
12	5.8	1.2	40	4.6	0
16	6.6	2.0	44	5.9	
20	7.0	2.4	48	6.8	
24	7.6	3.0	52	7.9	13.5 sq.ft x 4 = 54 sq. ft
					= 54 sq. f
TBM no.1			7.71	100.00	100.00
				^{0.00} O.K	C. Wise
SCS-ENG-29 (2-80)					

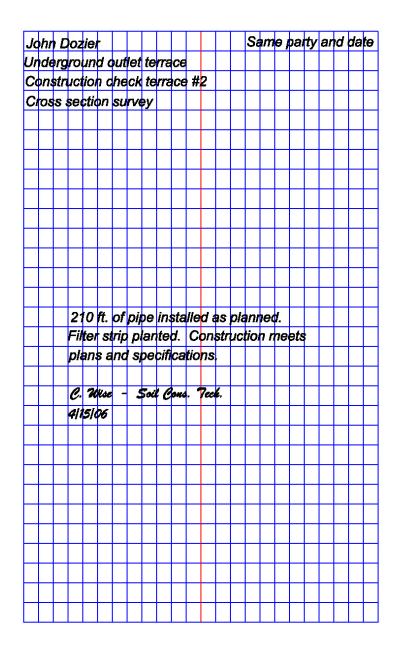
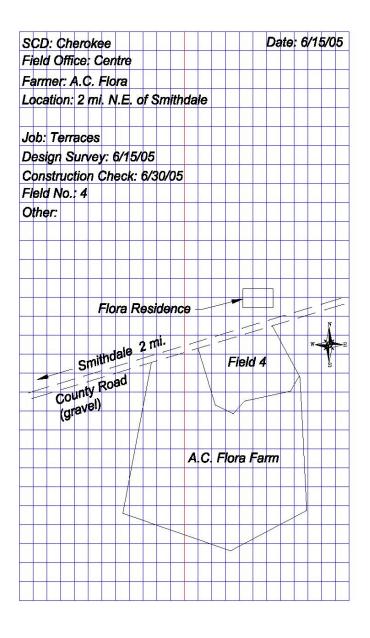


Figure AL8-4. Terrace system with underground outlets survey notes and design.

Terraces

- A. Engineering Surveys for Design and Construction Layout (SCS-ENG-191 Engineering Field Book) or (SCS-ENG-29)
 - 1. Complete title page with sketch of practice location.
 - 2. Show at beginning of survey; farmer's name, purpose of survey, name of practice, party members, duties, and date.
 - 3. Table showing terrace number, land slope, vertical or horizontal interval and layout length of each terrace.
 - 4. Sketch showing location of each terrace with appropriate outlets.


B. Construction and Performance Checks

(SCS-ENG-191 Engineering Field Book) or (SCS-ENG-29)

1. Normal survey check-out procedures are to make a profile and cross-section survey and record notes on at least one terrace in each group of terraces in each field.

Experienced technicians may be approved by the engineer to make visual construction approval of the terrace profiles. It is recommended that visual approval be done after a runoff event. Cross-section survey of at least one terrace in the system is required. A hand level survey is acceptable for this. Critical elevations and any potential problem areas should be checked and documented prior to approval of the system.

- 2. Table showing the constructed length of each terrace and total length of all terraces if the terraces are constructed at locations other than that laid out.
- 3. Supporting statements.
 - a. condition of outlets.
 - b. General remarks about construction meeting plans and specifications along with signature and dates.

	Lond			Lovord	
Terr. No.	Land Slope %	Vert. Int.	Horiz. Int.	Layout Length	×
1	3		80	175	
2	5	K.	60	225	Y
3	8		47	200	
4	6	6	54	150	s-
5	3		80	230	
6	5	e.	60	325	
7	7		54	335	
8	5		60	460	
9	4		54	285	
10	3		80	150	
11	5		60	125	
			Total =	2660	
	,	r			r-
					<u> </u>

A.	C.	FI	or	3	_		_	_	_					Ā	::-	Н.	R.	Sı	nil	h	_		
Te	rre	ю	S											φ	-	A.	D.	So	ru	gg	s		
De	esi	gn	aı	nd	Co	n:	str	uci	ioi	L	ay	ou	t			6/	15	05					
											Í												Ī
_			+						_										-				
_	-			_		_	H		-				=				-			_			<u> -</u>
																							_
	L				_!	_	_	_	Ŀ						L	_	<u> </u>	,	_	'	_!	_	
																							Ī
																							Ī
_			-						_	-									-				_
_	_					_	_	_	-				=	_	_	_	_		_				
																	,	, ,					
									L														
																							Ī
			T																i				_
																	قد		-	سسد			_
			-			0								_			_	7		1			
_	_						_	_	_		_	_				_	/	1	<u> </u>	4		_	
						-		-					5				_						
-			7	·					Ι,	1			9			,	>.			11	1		
-			1		-	1	F	-	-	1	, i			6						\	X.		Ī
			- 1				2			-	1	_	_		7	_		~	_	>			
_				1		-	_	_	=	7	1				7		_				1		
				1			3			1	- 1	-				8				1			_
_	_							7.000		1		1		_			_			1			
					1	_		4		_	1	1		-		إ	9						
					1						1		V.	_				-		٦			Ī
						1					1		/\										Ī
_			+			1			_	-	-	- 1	1						-				<u> </u>
_	<u> </u>			_	_	,			-	_		1			_	_	<u>_</u>		_	_	_		<u> -</u>
												Y		1									
												1											

Figure AL8-5. Terrace System Survey Notes and Design.

Cross	Section 7	errace No.	7 - Sta. 2+0	0	
Distance	Rod	Rod diff.	Distance	Rod	Rod diff.
0	4.8	0	18	5.1	
2	4.9	0.1	20	5.3	
4	5.3	0.5	22	5.7	
6	5.7	0.9	24	6.0	
8	5.9	1.1	26	6.3	
10	5.8	1.0	28	6.6	
12	5.4	0.6	Note: Fo	or cross sec	tion.
14	5.0	0.2	multiply by distance between stations.		
16	4.8	0			
Pr	ofile Terra	ace No. 7			
Station	Channel Rod	Ridge Rod			
0+00	7.3	6.4			
0+50	6.9	5.9			
1+00	6.6	5.6			
1+50	6.3	5.2			
2+00	5.9	4.8			
2+50	6.2	5.2			
3+00	6.6	5.6			
3+34	6.7	5.0			
CS-ENG-29					

Figure AL8-5. Terrace System Survey Notes and Design.

A.C. Flora - A.D. Scruggs - A.C. Flora Terraces 6/30/05 Construction Check Survey 4.8 4.8 0 16 6.6 28 Cross Section Terrace No. 7 - Sta. 2+00 Terraces constructed at locations laid out. A.D. Scruggs S.C. 7. Construction meets plans and specs. Waterway has adequate stand of Fescue grass this date. A.D. Scruggs Cons. Tech 6130105