NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE STANDARD

RESIDUE AND TILLAGE MANAGEMENT, REDUCED TILL

(Ac.)

CODE 345

DEFINITION

Managing the amount, orientation and distribution of crop and other plant residue on the soil surface year round while limiting the soildisturbing activities used to grow and harvest crops in systems where the field surface is tilled prior to planting.

PURPOSE

This practice is applied as a part of a conservation management system to support one or more of the following purposes:

- Reduce sheet, rill and wind erosion (Resource Concern: Soil erosion – Sheet, rill, & wind erosion).
- Reduce tillage-induced particulate emissions [Resource Concern: Air quality impacts – Emissions of Particulate Matter (PM) and PM Precursors].
- Maintain or improve soil health/quality and organic matter content (Resource Concern: Soil quality degradation – Organic matter depletion).
- Increase plant-available moisture (Resource Concern: Insufficient water – Inefficient moisture management).
- Reduce energy use (Resource Concern: Inefficient energy use – Farming/ranching practices and field operations).

CONDITIONS WHERE PRACTICE APPLIES

This practice applies to all cropland.

This practice includes tillage methods commonly referred to as mulch tillage or conservation

tillage where the entire soil surface is disturbed by tillage operations such as chisel plowing, field cultivating, tandem disking, or vertical tillage. It also includes tillage/planting systems with few tillage operations (e.g. ridge till) but which do not meet the STIR criteria for Residue and Tillage Management - No Till (code 329).

CRITERIA

General Criteria Applicable to All Purposes

Uniformly distribute residues over the entire field. Removing residue from the row area prior to or as part of the planting operation is acceptable.

Do not burn residue.

Determine the Soil Tillage Intensity Rating (STIR) value by considering all field operations that are performed during the crop interval between harvest of the previous cash crop and harvest or termination of the current cash crop (includes fallow periods and cover crops). The STIR value cannot be greater than 80, and no primary inversion tillage implements (e.g. moldboard plow) can be used.

Additional Criteria to Reduce Sheet, Rill and Wind Erosion

Use the current approved water and/or wind erosion prediction technology to determine the:

- amount of randomly distributed surface residue needed;
- time of year the residue needs to be present in the field, and
- amount of surface soil disturbance allowed to reduce erosion to the desired level.

Conservation practice standards are reviewed periodically and updated if needed. To obtain the current version of this standard, contact your Natural Resources Conservation Service <u>State Office</u> or visit the <u>Field Office Technical Guide</u>.

In ridge-till systems, plan ridge height and ridge orientation to manage runoff and minimize erosion, with a maximum row grade of 4%.

Additional Criteria to Reduce Tillage-Induced Particulate Emissions

Reduce or modify tillage operations that create dust, especially during critical air quality periods.

Adopt tillage practices that reduce particulate emissions.

Additional Criteria to Maintain or Improve Soil Quality and Organic Matter

Ensure that an evaluation of the cropping system using the current approved soil conditioning index (SCI) procedure results in zero or positive.

Additional Criteria to Increase Plant-Available Moisture

Reducing Evaporation from the Soil Surface. Maintain a minimum of 2000 pounds per acre or 60 percent residue cover on the soil surface throughout the year.

Maintain crop stubble height on at least 60% of the field during the time of expected evaporation losses:

- at least 10 inches for crops with a row spacing of less than 15 inches;
- at least 15 inches for crops with a row spacing of 15 inches or greater.

Trapping Snow. Leave crop stubble in an upright position after fall tillage operations.

Maintain the following crop stubble height on at least 50% of the field during the time significant snowfall is expected to occur:

- at least 10 inches for crops with a row spacing of less than 15 inches;
- at least 15 inches for crops with a row spacing of 15 inches or greater

Conduct fall tillage operations as close as possible to perpendicular to the direction of prevailing winds during the time that significant snowfall is expected to occur.

Additional Criteria to Reduce Energy Use

Reduce the total energy consumption associated with field operations by at least 25% compared to the benchmark condition. Use the current approved NRCS tool to document energy use reductions.

CONSIDERATIONS

General - Removal of crop residue, such as by baling or grazing, can have a negative impact on resources. These activities should not be performed without full evaluation of impacts on soil, water, animal, plant, and air resources.

Reduced till may be practiced continuously throughout the crop sequence, or may be managed as part of a residue management system that includes other tillage methods such as no till. Selection of acceptable tillage methods for specific site conditions may be aided by the use of an approved Soil Tillage Intensity Rating (STIR).

Production of adequate amounts of crop residue necessary for the proper functioning of this practice can be enhanced by selection of high residue producing crops and crop varieties in the rotation, use of cover crops and adjustment of plant populations and row spacing.

Improving Soil Organic Matter Content -

Carbon loss is directly related to the volume of soil disturbed, the intensity of the disturbance, the soil moisture content, and soil temperature at the time the disturbance occurs. The following guidelines can make this practice more effective:

- Shallow soil disturbance (1-3 inches) releases less CO₂ than deeper operations.
- When deep soil disturbance is performed, such as by subsoiling or fertilizer injection, make sure the vertical tillage slot created by these implements is closed at the surface.
- Planting with a single-disk opener no-till drill will release less CO₂ than planting with a wide-point hoe/chisel opener air seeder drill.
- Soil disturbance that occurs when soil temperatures are below 50° F will release less CO₂ than operations done when the soil is warmer.

Improving Soil Health/Quality – Producers can achieve major improvements in soil health by using the following activities/practices:

• Use a diverse crop rotation, incorporating multiple crop types (cool-season grass, cool-

season legume/forb, warm-season grass, warm-season legume/forb) into the crop rotation.

- Plant a cover crop after every cash crop in the rotation. Multi-species cover crop mixes provide greater benefits than single-specie cover crops.
- Using undercutting tools rather than burying tools will enhance accumulation of organic material in the surface layer.
- Conducting any soil-disturbing field operation when soil moisture is optimal, neither excessive nor too dry, will help maintain soil tilth, and reduce the need for additional tillage in the future.

Increasing Plant-available Moisture – The effectiveness of stubble to trap snow increases with stubble height. Increasing the stubble height beyond the minimum required will increase the amount of snow trapped.

Variable height stubble patterns may be created to further increase snow trapping and storage.

Tillage and planting operations done on the contour will help slow overland flow and increase infiltration, thus increasing the potential for increased water storage in the root zone.

Providing Food and Escape Cover for Wildlife – Avoid tillage and other soil and residue/stubble disturbing operations during the nesting season and brood-rearing period for ground-nesting species

Forgoing fall shredding or tillage operations will maximize the amount of wildlife food and cover during critical winter months.

Leaving rows of unharvested crop standing at intervals across the field or adjacent to permanent cover will enhance the value of residues for wildlife food and cover. Leaving unharvested crop rows for two growing seasons will further enhance the value of these areas for wildlife.

An approved habitat evaluation procedure will aid in determining the appropriate time and amount of residue and stubble needed to provide adequate food and cover for the target wildlife species.

PLANS AND SPECIFICATIONS

Prepare and record specifications for establishment and operation of this practice for each field or treatment unit. As appropriate identify:

- The resource concern to be treated or the purpose for applying the practice
- Planned crop(s)
- The amount of residue produced by each crop.
- The amount of residue (pounds/acre or percent surface cover) required to accomplish the purpose, and the time of year it must be present
- The maximum STIR value allowed to accomplish the purpose, and the time of year that soil disturbance is allowed
- The minimum soil conditioning index value required to accomplish the purpose
- All field operations or activities that affect:
 - o Amount of residue cover
 - o Residue orientation
 - o Surface disturbance

OPERATION AND MAINTENANCE

Evaluate/measure the crop residues cover and orientation for each crop to ensure the planned amounts and orientation are being achieved. Adjust management as needed to either plan a new residue amount or orientation; or adjust the planting, tillage, or harvesting equipment.

If there are areas of heavy residue accumulation (because of movement by water or wind) in the field, spread the residue prior to planting so it does not interfere with planter operation.

REFERENCES

http://attra.ncat.org/attrapub/organicmatters/conservationtillage.html

Kuepper, George, 2001. Pursuing conservation tillage systems for organic crop production. ATTRA.

Reicosky, D.C. 2004. Tillage-induced soil properties and chamber mixing effects on gas

exchange. Proc. 16th Triennial Conf., Int. Soil Till. Org. (ISTRO).

Reicosky, D.C., M.J. Lindstrom, T.E. Schumacher, D.E. Lobb and D.D. Malo. 2005. Tillage-induced CO_2 loss across an eroded landscape. Soil Tillage Res. 81:183-194.

Renard, K.G., G.R. Foster, G.A. Weesies, D.K. McCool and D.C. Yoder, coordinators. 1997. Predicting soil erosion by water: A guide to conservation planning with the Revised Universal Soil Loss Equation (RUSLE). USDA, Agricultural Handbook 703. Shaffer, M.J., and W.E. Larson (ed.). 1987. Tillage and surface-residue sensitive potential evaporation submodel. *In* NTRM, a soil-crop simulation model for nitrogen, tillage and crop residue management. USDA Conserv. Res. Rep. 34-1.

USDA, NRCS. 2011. National Agronomy Manual. 190-V. 4th Ed.

USDA-ARS. Skidmore, E.L. and N.P. Woodruff. 1968. Wind erosion forces in the United States and their use in predicting soil loss. USDA, Agriculture Handbook 346