## Tr 55 Worksheet 4: Graphical Peak Discharge Method

Project: $\qquad$ Designed By: $\qquad$ Date: $\qquad$
Location: $\qquad$ Checked By: $\qquad$ Date: $\qquad$
Check one: $\qquad$ Present $\qquad$ Developed

1. Data:

Drainage area $\qquad$ $\mathrm{A}_{\mathrm{m}}=$ $\qquad$ $\mathrm{mi}^{2}$ (acres/640)

Runoff curve number .... $\mathrm{CN}=$ (From Worksheet 2)
Time of concentration ..... $\mathrm{T}_{\mathrm{c}}=$ $\qquad$ hr (From Worksheet 3)

Rainfall distribution type $\qquad$ $=$ $\qquad$ (II, III, DMVIII)

Pond and swamp areas spread throughout watershed $\qquad$ $=$ $\qquad$ percent of $A_{m}($ $\qquad$ acres or $\mathrm{mi}^{2}$ covered)
2. Frequency $\qquad$ yr

| Storm \#1 | Storm \#2 | Storm \#3 |
| :--- | :--- | :--- |
|  |  |  |

3. Rainfall, P (24-hour). $\qquad$ in $\square$
4. Initial abstraction, $\mathrm{I}_{\mathrm{a}}$
in
 (Use CN with Table 4-1.)
5. Compute $I_{a} / P$ $\qquad$
$\square$
6. Unit peak discharge, $q_{u}$ $\qquad$ csm/in
 (Use $T_{c}$ and $I_{a} / P$ with exhibit 4- 10 )
7. Runoff, Q $\qquad$ in $\square$ (From Worksheet 2)
8. Pond and swamp adjustment factor, $F$ in
 (Use percent pond and swamp area with Table 4-2. Factor is 1.0 for zero percent pond and swamp area.)
9. Peak discharge, $q_{p}$. cfs $\square$ (Where $q_{p}=q_{u} A_{m} Q F_{p}$ )
