NATURAL RESOURCES CONSERVATION SERVICE

CONSERVATION PRACTICE STANDARD

VEGETATED TREATMENT AREA

CODE 635

(Ac.)

DEFINITION
An area of permanent vegetation used for agricultural wastewater treatment.

PURPOSE
Improve water quality by using vegetation to reduce the loading of nutrients, organics, pathogens, and other contaminants associated with livestock, poultry, and other agricultural operations.

CONDITIONS WHERE PRACTICE APPLIES
This practice applies where:

- A vegetated treatment area (VTA) can be constructed, operated and maintained to treat contaminated runoff from such areas as feedlots, feed storage, compost areas, solid manure storage areas, barnyards, and other livestock holding areas; or to treat process wastewater from agricultural operations.
- A VTA is a component of a planned agricultural waste management system.

CRITERIA
Size the total treatment area for the VTA on both the contributing site water runoff and vegetation nutrient balances.

- Water balance is the soil’s capacity to infiltrate and retain runoff within the root zone. Base the runoff determination on the most restrictive soil layer within the root zone regardless of its thickness. Use the soil’s water holding capacity in the root zone, infiltration rate, permeability, and hydraulic conductivity to determine its ability to absorb and retain runoff.
- Nutrient balance utilizes the nutrients from the waste runoff to meet the nutrient removal requirements in the harvested vegetation. Base the nutrient balance on the most limiting nutrient (i.e. nitrogen or phosphorus).

Divert uncontaminated water from the treatment area to the fullest extent possible unless additional moisture is needed to manage vegetation growth in the treatment area.

Establish permanent vegetation in the treatment area. Use a single species or a mixture of grasses, legumes, and other forbs adapted to the soil and climate. Select species to meet the current site conditions and intended use. Selected species will have the capacity to achieve adequate density, vigor, and yield within an appropriate time frame to treat contaminated runoff. Complete site preparation and seeding at a time and in a manner that best ensures survival and growth of the selected species.

Conservation practice standards are reviewed periodically and updated if needed. To obtain the current version of this standard, contact your local Natural Resources Conservation Service Field Office or visit the Field Office Technical Guide.
Select vegetation that will withstand anticipated wetting or submerged conditions. Harvest vegetation as appropriate to encourage dense growth, maintain an upright growth habit, and remove nutrients and other contaminants that are contained in the plant tissue.

Design the VTA based on the need to treat the runoff volume from the 25-year, 24-hour storm event from the agricultural animal management facility. Infiltrate a portion or the entire volume of the design storm, based on management objectives. Unless discharge is permitted by applicable regulations, store the non-infiltrated portion of the design volume for utilization or treatment.

Exclude all livestock, including grazing, from the VTA.

Apply discharge into and through vegetated treatment area as sheet flow. To encourage sheet flow across the treatment area, provide a means to disperse concentrated flow, such as a ditch, curb, gated pipe, level spreader, or a sprinkler system. Complete land grading and install structural components necessary to maintain sheet flow throughout the treatment area.

Limit the natural or constructed slope of the VTA from 0.3 to 6 percent. The minimum entrance slope to the VTA is 1 percent.

Use NRCS Conservation Practice Standard (CPS) Code 632, Waste Separation Facility, to pretreat influent with waste separation (i.e., settling basin) to reduce organic loading and nutrients to levels that are tolerated by the VTA and to prevent excessive accumulation of solids in the treatment area.

Utilize inlet control structures to control the rate and timing of inflow during normal operations and to control inflow as necessary for operation and maintenance.

Locate VTA outside of floodplains. However, if site restrictions require location within a floodplain, provide protection from inundation or damage from a 25-year flood event, or larger, if required by regulation.

Install VTA where the water table is either naturally deep or artificially lowered so that the infiltrated runoff does not mingle with the groundwater at the bottom of the root zone. Subsurface drainage within the VTA is not allowed. Subsurface drainage may be used to lower the seasonal high water table to an acceptable level provided the subsurface drain lines are at least 10 feet away from the VTA boundary.

Unless soil moisture can be maintained to prevent drying and cracking, do not plan infiltration areas where soil features such as cracking will result in preferential flow paths that transport untreated runoff from the surface to below the root zone.

Ensure that appropriate erosion control measures and sheet flow control measures (i.e., gravel or rock spreaders) are adequately addressed over the entire length of the VTA.

MAINE DESIGN CRITERIA

For the purposes of this standard, the following definitions apply:

- Intermittent or Perennial Stream: Any stream with a watershed greater than 100 acres.
- Sensitive Habitat: Rare or Exemplary natural communities or ecosystems as designated by the Maine Natural Areas Program or the U.S. Fish and Wildlife Service (USFWS), a pond or a fully functioning forested wetland as determined by the State Soil Scientist (SSS) or representative.

A VTA shall not be located within 300 feet of an intermittent or perennial stream or other sensitive habitat when used for any of the following:
- Treats runoff from a structure that services more than 15 animal units
- Treats runoff from a composting facility that contains carcasses, offal, or meat scraps

This includes, but is not limited to runoff from heavy use areas, waste storage facilities, compost facilities or silos.
If there are no other feasible means to address an existing water quality resource concern, exceptions can be made to the above criteria by the State Conservation Engineer (SCE).

All VTA’s, regardless of number of AU served, shall use the following criteria based on water balance to size the VTA:

No VTA shall be wider than 60 feet. No flow length shall be greater than 100 feet. Therefore, no VTA shall be greater than 6,000 square feet.

To encourage sheet flow, provide retention of peak runoff, and allow for settling of incidental particulates, each VTA shall have a retention area prior to Level Lip Spreader. The retention area has to meet the same separation distances as the treatment strip. Use Table 1 to size the retention area. Retention areas shall not be more than 60 feet long and should not be less than 6 feet wide. Maximum retention area width can be up to 10 feet wide to accommodate maintenance equipment needed to clean out the retention area. Use NRCS Conservation Practice Standard (CPS) Code 632, Waste Separation Facility, as needed, to pretreat influent with waste separation (i.e. settling basin) to reduce organic loading and nutrients to levels that are tolerated by the VTA and to prevent excessive accumulation of solids in the retention area. NRCS CPS Code 629, Waste Treatment shall also be followed when treating silage leachate.

Table 1: Volume of Retention Area

<table>
<thead>
<tr>
<th>Impervious surface use</th>
<th>Area of impervious surface used to calculate VTA size (y) Units = sq. ft.</th>
<th>Volume of retention area prior to sheet flow release (V) Units = cu. ft.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Animal feedlot</td>
<td>Area where animals have access</td>
<td>V = 0.125y</td>
</tr>
<tr>
<td>Silage storage</td>
<td>Area where silage is stored</td>
<td>V = 0.125y</td>
</tr>
<tr>
<td>Cull potato storage</td>
<td>Area where potatoes are stored</td>
<td>V = 0.125y</td>
</tr>
<tr>
<td>Manure storage</td>
<td>Area where manure is stacked</td>
<td>V = 0.125y</td>
</tr>
<tr>
<td>Compost amendment storage</td>
<td>Area where amendments are stacked</td>
<td>V = 0.125y</td>
</tr>
<tr>
<td>Composting</td>
<td>Area for composting</td>
<td>V = 0.06y</td>
</tr>
</tbody>
</table>

TREATMENT STRIP SITING CRITERIA

Consult with a Resource Soil Scientist to locate proposed VTA’s and determine if any modifications are needed to meet separation distances and soils criteria.

➢ **SOIL PERMEABILITY:**

The design shall be based on the most restrictive soil layer within the root zone. The **Maximum Permeability** in the root zone shall be less than or equal to **2.0 in/hr. UNLESS:**

1. A natural or constructed barrier within the soil profile mitigates the potential of ground water contamination. In Maine, a natural barrier would be a dense substratum such as a glacial till hardpan or heavy marine or lacustrine sediment that results in a seasonally perched water table.

OR

2. Greater than or equal to **18 inches** of loamy fine sand or finer soil material (permeability ≤ 2.0 in/hr) exists over soil material with permeability > 2.0 in/hr such as sand or gravel.
OTHER VTA SITE/SOIL CHARACTERISTIC REQUIREMENTS:

- Minimum Depth to Bedrock: 18 inches
- Minimum Depth to Seasonal High Water Table: 15 inches
- Slope Range: 1 – 6 percent

SETBACKS FROM RESOURCE CONCERNS:

- Wells: 100 feet
- Receiving Surface Water: 100 ft. ≤ 15 animal units, 300 ft. > 15 animal units OR carcass/offal/meat composting
- Public Water Supply: 300 feet
- Other options or modifications, such as ROOFED AREAS, will be necessary if the above unsuitable conditions exist in potential treatment areas. See NRCS CPS 367, Roofs and Covers for details.

Use Table 2 to size the vegetated treatment area based on soil type.

Table 2: Vegetated Treatment Area Size Based on Soil Type

<table>
<thead>
<tr>
<th>SOIL / PARENT MATERIAL TYPES</th>
<th>SOIL PERMEABILITY RANGE</th>
<th>SIZE RATIO OF IMPERMEABLE SURFACE (Y) TO VEGETATED TREATMENT AREA</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. COARSE LOAMY & SANDY GLACIAL TILLS</td>
<td>0.6 – 2.0 in/hr</td>
<td>1 : 1</td>
</tr>
<tr>
<td>2. COARSE SILTY SEDIMENTS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3. COARSE SILTY ALLUVIAL DEPOSITS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FINE LOAMY AND SILTY GLACIAL TILLS</td>
<td>0.2 – 0.6 in/hr</td>
<td>1 : 1.5</td>
</tr>
<tr>
<td>FINE SILTY SEDIMENTS</td>
<td>0.06 – 0.2 in/hr</td>
<td>1 : 1.8</td>
</tr>
</tbody>
</table>

ADDITIONAL CRITERIA FOR DOSING SYSTEMS

Distribute the effluent over the VTA through sprinkler irrigation or other pressure dosing system. Match the application rate of sprinkler nozzles to the most restrictive soil infiltration rate or other factors to prevent effluent from discharging from the VTA.

CONSIDERATIONS

Direct contaminated effluent to a waste storage facility during excessively wet or cold climatic conditions.

Additional nutrient and infiltration design guidance in Vegetated Treatment Systems for Open Lot Runoff, (Koelsch, et. al., 2006).

Provide more than one VTA to allow for resting, harvesting vegetation, and maintenance, and to minimize the potential for overloading.

If impervious area requires more than 6,000 square feet of vegetated filter area for treatment, then consider installing multiple filter areas and divide impervious area flow accordingly.

Provide additional storage in the basin collection area to minimize or eliminate discharge into the VTA during rainfall events. Delay application until rainfall has ended to improve infiltration and nutrient uptake.

To maximize nutrient uptake, use warm and cool season species in separate areas to ensure that plants are actively growing during different times of the year.

Supplement water as necessary to maintain plants in a condition suitable for the treatment purpose.

Consider suspension of application to treatment area when weather conditions are not favorable for aerobic activity or when soil temperatures are lower than 39° F. When soil temperatures are between 39° F and 50° F, consider reducing application rate and increasing application period while maintaining a constant
hydraulic loading rate.

Manage the VTA to maintain vegetative treatment effectiveness throughout the growing season. Time the harvest of the VTA plants so vegetation can regrow to a sufficient height to effectively filter effluent late in the growing season.

Install a berm around the lower end of the VTA to contain excess runoff that may occur.

Effluent from the VTA may be stored for land application, recycled through the wastewater management system, or otherwise used in the agricultural operation.

Install fences or other measures to exclude or minimize access of the VTA to humans or animals.

Install a pumping system at the bottom of the VTA to either recirculate the effluent to the top of the VTA or transfer to a waste storage facility.

PLANS AND SPECIFICATIONS

Prepare plans and specifications that describe the requirements for applying the practice to achieve its intended use. As a minimum include:

- Critical construction perimeters, necessary construction sequence, vegetation establishment requirements, retention area and level spreader mechanism requirements, associated practices and agronomic nutrient removal.
- Plan view showing the location of all components of the VTA.
- Details of the length, width, and slope of the treatment area to accomplish the planned purpose (length refers to flow length down the slope of the treatment area).
- Herbaceous species, seed selection, and seeding rates to accomplish the planned purpose.
- Planting dates, care, and handling of the seed to ensure that planted materials have an acceptable rate of survival.
- Site preparation sufficient to establish and grow selected species.

OPERATION AND MAINTENANCE

Develop an operation and maintenance plan consistent with the purposes of the practice, its intended life, safety requirements, and the criteria for its design. Include the following items as appropriate:

- Inspect and maintain retention and spreader area to ensure that sheet flow loading is maintained for the VTA.
- Inspect and repair treatment areas after storm events to address gullies, reseed disturbed areas, and prevent concentrated flow.
- Control undesired weed species, especially state-listed noxious weeds, and other pests that could inhibit proper functioning of the VTA.
- Exclude livestock from the VTA.
- Apply supplemental nutrients and soil amendments as needed to maintain the desired species composition and stand density of herbaceous vegetation.
- Maintain or restore the treatment area as necessary by periodically grading or removing excess material when deposition jeopardizes its function. Reestablish herbaceous vegetation.
- Routinely dethatch or aerate a treatment area used for treating runoff from livestock holding areas in order to promote infiltration.
- Conduct maintenance activities only when the surface layer of the VTA is dry enough to prohibit compaction.
- Monitor all treatment areas to maintain optimal crop growth and environmental protection.

REFERENCES
