Practice: 374 - Farmstead Energy Improvement

Scenario: #1 - Lighting - CFL

Scenario Description:
To install dimmable CFLs to replace incandescent lamps on a one-for-one basis. Light fixtures do not have to be replaced. A typical poultry house has 48 fixtures. CFL requirements: minimum 8 Watt, 4100 Kelvin, dimmable, grow-out bulb; industrial grade; suitably protected from dirt accumulation. In high humidity environments or areas subject to wash down, gasketted or weatherproof housings are required to prevent corrosion and premature failure.

Before Situation:
An inefficient lighting system such as one using incandescent lamps has been identified by an on-farm energy audit.

After Situation:
More efficient lighting is provided by Compact Fluorescent Lamps (CFLs) in order to reduce energy use as evidenced by the energy audit. Associated practices/activities: 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: Each lamp replaced

Scenario Unit: Each

Scenario Typical Size: 1

Scenario Cost: $16.82 Scenario Cost/Unit: $16.82

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>General Labor</td>
<td>231</td>
<td>Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.</td>
<td>Hour</td>
<td>$18.92</td>
<td>0.167</td>
<td>$3.16</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lighting, bulb, CFL, 8 watt</td>
<td>1166</td>
<td>8 watt compact fluorescent lamp (CFL), typically 4100 Kelvin, dimmable, grow-out bulb, industrial grade, suitably protected from dirt accumulation. Materials only.</td>
<td>Each</td>
<td>$13.66</td>
<td>1</td>
<td>$13.66</td>
</tr>
</tbody>
</table>
Practice: 374 - Farmstead Energy Improvement
Scenario: #2 - Lighting - LED

Scenario Description:
To install dimmable LEDs to replace incandescent lamps on a one-for-one basis. Light fixtures do not have to be replaced. A typical poultry house has 48 fixtures. LED requirements: minimum 6 Watt, 3700 Kelvin, dimmable, grow-out bulb; industrial grade; suitably protected from dirt accumulation. In high humidity environments or areas subject to wash down, gasketted or weatherproof housings are required to prevent corrosion and premature failure.

Before Situation:
An inefficient lighting system such as one using incandescent lamps has been identified by an on-farm energy audit.

After Situation:
More efficient lighting is provided by Light-Emitting Diode (LED) lamps in order to reduce energy use as evidenced by the energy audit. Associated practices/activities: 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: Each lamp replaced

Scenario Unit: Each

Scenario Typical Size: 1

Scenario Cost: $21.54
Scenario Cost/Unit: $21.54

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td></td>
<td>Labor performed using basic tools such as power tool, shovels, and other tools that do not require extensive training. Ex. pipe layer, herder, concrete placement, materials spreader, flagger, etc.</td>
<td>Hour</td>
<td>$18.92</td>
<td>0.167</td>
<td>$3.16</td>
</tr>
<tr>
<td>General Labor</td>
<td>231</td>
<td></td>
<td></td>
<td>$18.92</td>
<td>0.167</td>
<td>$3.16</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td>6 watt light emitting diode (LED), typically 3700 Kelvin, dimmable, grow-out bulb; industrial grade; suitably protected from dirt accumulation. Materials only.</td>
<td>Each</td>
<td>$18.38</td>
<td>1</td>
<td>$18.38</td>
</tr>
</tbody>
</table>
Practice: 374 - Farmstead Energy Improvement
Scenario: #3 - Lighting - Linear Fluorescent

Scenario Description:
The lighting system consists of a four-foot, three-lamp fixture with a single electronic ballast. The high-efficiency lighting system uses high-efficiency T8 fluorescent lamps. Associated materials for installation of replacement fixtures are included. Appropriate disposal of existing lamps, ballasts and other materials is required.

Before Situation:
Inefficient lighting (such as incandescent or T12 fluorescent tubes driven by magnetic ballasts) as evidenced by an on-farm energy audit.

After Situation:
High-efficiency lighting system which reduces energy use. The new lighting equipment will provide suitable light levels and reduce overall power requirements (kW) compared to the existing lighting system as evidenced by the energy audit. Associated practices/activities: may include 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: Each fixture replaced
Scenario Unit: Each
Scenario Typical Size: 1
Scenario Cost: $344.06
Scenario Cost/Unit: $344.06

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td></td>
<td>Labor requiring a high level skill set: Includes carpenters, welders, electricians,</td>
<td>Hour</td>
<td>$27.06</td>
<td>2</td>
<td>$54.12</td>
</tr>
<tr>
<td>Skilled Labor</td>
<td>230</td>
<td>conservation professionals involved with data collection, monitoring, and or record</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>keeping, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td>1168</td>
<td>75 watt fluorescent lamp fixture with T5 or T8 lamps and ballast. Materials only.</td>
<td>Each</td>
<td>$289.94</td>
<td>1</td>
<td>$289.94</td>
</tr>
</tbody>
</table>

FY2014 - compiled 12/3/2013
Practice: 374 - Farmstead Energy Improvement

Scenario: #4 - Ventilation - Exhaust

Scenario Description:
Replacement of a conventional exhaust fan with high volume, low speed, efficient exhaust fan. Fans being installed should be models previously tested by BESS Lab or the Air Movement and Control Association and be in top 20 percentile of fans tested. Practice certification will be through receipts and pictures from the applicant. Typical scenario includes the replacement of a 48” fan.

Before Situation:
Inefficient ventilation in an agricultural building.

After Situation:
High-efficiency ventilation system which reduces energy use. The new ventilation equipment will provide suitable air quality and reduce overall power requirements (kW) compared to the existing ventilation system as evidenced in an energy audit. Associated practices/activities: may include 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: Each

Scenario Unit: Each

Scenario Typical Size: 1

Scenario Cost: $1,316.28
Scenario Cost/Unit: $1,316.28

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td></td>
<td>Labor requiring a high level skill set: Includes carpenters, welders, electricians,</td>
<td>Hour</td>
<td>$27.06</td>
<td>4</td>
<td>$108.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conservation professionals involved with data collection, monitoring, and or record</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>keeping, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td>Fan, exhaust, 48” High Efficiency</td>
<td>Each</td>
<td>$1,208.04</td>
<td>1</td>
<td>$1,208.04</td>
</tr>
<tr>
<td></td>
<td></td>
<td>48 inch high efficiency exhaust fan, controls, wiring, and associated appurtenances.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Practice: 374 - Farmstead Energy Improvement
Scenario: #5 - Ventilation - HAF

Scenario Description:
A system of fans are installed to create a horizontal air circulation pattern; the new system promotes efficient heat and moisture distribution. In a typical 10,000 square foot greenhouse, 10 HAF fans are needed. Fan performance meets Energy Audit efficiency criteria as tested by AMCA or BESS Labs.

Before Situation:
Inefficient air circulation system in a greenhouse.

After Situation:
High-efficiency air circulation system which reduces energy use. The new equipment will provide suitable air quality and reduce overall power requirements (kW) compared to the existing system as evidenced in an energy audit. Associated practices/activities: may include 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: Each
Scenario Unit: Each
Scenario Typical Size: 1
Scenario Cost/Unit: $221.08

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td></td>
<td>Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.</td>
<td>Hour</td>
<td>$27.06</td>
<td>3</td>
<td>$81.18</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td>High efficiency Horizontal Air Flow (HAF) fan, controls, wiring, and associated appurtenances. Materials only.</td>
<td>Each</td>
<td>$139.90</td>
<td>1</td>
<td>$139.90</td>
</tr>
</tbody>
</table>
Practice: 374 - Farmstead Energy Improvement
Scenario: #6 - Plate Cooler

Scenario Description:
The installation of all stainless steel dual pass plate cooler, type 316 stainless steel. Practice certification will be through receipts and pictures from the applicant.

Before Situation:
Inefficient milk cooling (minimal pre-cooling of milk before entering the bulk tank).

After Situation:
High-efficiency milk cooling system which reduces energy use. The new milk cooling equipment will pre-cool the milk and reduce overall power requirements (kW) compared to the existing milk cooling system (where most of the cooling was accomplished in the bulk tank) as evidenced in an energy audit. Associated practices/activities: may include 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: Gal/hr
Scenario Unit: Gallon/Hour
Scenario Typical Size: 15,000

Scenario Cost: $6,290.49
Scenario Cost/Unit: $0.42

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skilled Labor</td>
<td>230</td>
<td>Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.</td>
<td>Hour</td>
<td>$27.06</td>
<td>8</td>
<td>$216.48</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plate Cooler, 750 - 999 gal/hr capacity</td>
<td>1178</td>
<td>Stainless Steel, dual pass plate cooler with 750 - 999 gallon/hour capacity. Includes materials and shipping only.</td>
<td>Each</td>
<td>$6,074.01</td>
<td>1</td>
<td>$6,074.01</td>
</tr>
</tbody>
</table>
Practice: 374 - Farmstead Energy Improvement
Scenario: #7 - Scroll Compressor

Scenario Description:
Install a new scroll compressor, associated controls, wiring, and materials to retrofit an existing refrigeration system. A new condenser is not included in this typical scenario. Typical scenario includes a new 5 horsepower scroll compressor.

Before Situation:
Inefficient reciprocating compressor as a key component of the refrigeration system used to cool milk. The compressor is a critical part of a milk cooling system, affecting milk quality, system reliability, and system efficiency.

After Situation:
A more efficient scroll compressor, which will reduce energy use, is evidenced by the energy audit. A comparably sized scroll compressor provides refrigeration capacity at a higher efficiency than a reciprocating compressor. Newer scroll compressor systems typically reduce electricity use by 15 to 25 percent compared to reciprocating compressors. Associated practices/activities: may include 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: Each
Scenario Unit: Each
Scenario Typical Size: 1

Scenario Cost: $2,593.71
Scenario Cost/Unit: $2,593.71

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>230</td>
<td>Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.</td>
<td>Hour</td>
<td>$27.06</td>
<td>4</td>
<td>$108.24</td>
</tr>
<tr>
<td>Materials</td>
<td>1183</td>
<td>Scroll compressor, 5 Horsepower, controls, wiring, and appurtenances. Materials only.</td>
<td>Each</td>
<td>$2,485.47</td>
<td>1</td>
<td>$2,485.47</td>
</tr>
</tbody>
</table>
Practice: 374 - Farmstead Energy Improvement
Scenario: #8 - Variable Speed Drive > 5 HP

Scenario Description:
The typical scenario consists of a variable speed drive (VSD) and appurtenances, such as hook-ups, control panels, wiring, control blocks, filters, switches, pads, etc. attached to an electric motor used to drive a ventilation fan, irrigation pumps, vacuum pump, or similar equipment involved with agricultural production. The motor size, on which the VSD is added, is larger than 5 HP.

Before Situation:
The system is inefficient when a motor operates at constant speed to satisfy a load which varies as to flow rate and/or pressure requirements.

After Situation:
An on-farm energy audit has determined that energy use can be reduced through use of a VSD to control electric motors. After the VSD is applied, the motor speed can be adjusted to reduce power requirements and better match varied flow or pressure requirements. Associated practices/activities may include 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: HP
Scenario Unit: Horse Power
Scenario Typical Size: 50
Scenario Cost: $11,212.02
Scenario Cost/Unit: $224.24

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skilled Labor</td>
<td>230</td>
<td>Hour</td>
<td>17</td>
<td>$460.02</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Variable Speed Drive</td>
<td>1288</td>
<td>Horsepower</td>
<td>50</td>
<td>$10,752.00</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Does not include motor. Materials only.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FY2014 - compiled 12/3/2013
Practice: 374 - Farmstead Energy Improvement

Scenario: #9 - Automatic Controller System

Scenario Description:
The typical scenario consists of an automatic control system installed on an existing manually controlled agricultural system. Typical components may include any of the following: wiring, sensors, data logger, logic controller, communication link, software, switches, and relay.

Before Situation:
A manually controlled system is existing in an agricultural facility that causes the inefficient use of energy, as evidenced by an on-farm energy audit.

After Situation:
An on-farm energy audit has determined that energy use can be reduced through use of an automatic controller that helps regulate the energy consumption of the existing system. Associated practices/activities may include: 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: Each system

Scenario Unit: Each

Scenario Typical Size: 1

Scenario Cost: $1,372.20 **Scenario Cost/Unit:** $1,372.20

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skilled Labor</td>
<td>230</td>
<td>Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.</td>
<td>Hour</td>
<td>$27.06</td>
<td>9</td>
<td>$243.54</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Switches and Controls, Wi-Fi system and software</td>
<td>1194</td>
<td>Software with built-in cellular or Wi-Fi communication commonly used to control pumps and irrigation systems</td>
<td>Each</td>
<td>$399.13</td>
<td>1</td>
<td>$399.13</td>
</tr>
<tr>
<td>Switches and Controls, programmable controller</td>
<td>1193</td>
<td>Programmable logic controller (with or without wireless telecommunications) commonly used to control pumps and irrigation systems</td>
<td>Each</td>
<td>$147.28</td>
<td>1</td>
<td>$147.28</td>
</tr>
<tr>
<td>Switches and Controls, temp sensors</td>
<td>1192</td>
<td>Temperature and soil moisture sensors installed as part of an electronic monitoring (with or without wireless telecommunications) commonly used to control pumps and irrigation systems</td>
<td>Each</td>
<td>$582.25</td>
<td>1</td>
<td>$582.25</td>
</tr>
</tbody>
</table>
Practice: 374 - Farmstead Energy Improvement
Scenario: #10 - Motor Upgrade > 100 HP

Scenario Description:
The typical scenario consists of replacing an existing electric motor used to drive a ventilation fan, irrigation pumps, vacuum pump, or similar equipment involved with agricultural production with a new, high efficiency motor. The motor size is larger than 100 horsepower.

Before Situation:
The system is inefficient with a standard efficiency motor.

After Situation:
An on-farm energy audit has determined that energy use can be reduced through use of a NEMA premium motor. Associated practices/activities may include: 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: HP
Scenario Unit: Horse Power
Scenario Typical Size: 150

Scenario Cost: $21,942.84 Scenario Cost/Unit: $146.29

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>230</td>
<td>Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.</td>
<td>Hour</td>
<td>$27.06</td>
<td>16</td>
<td>$432.96</td>
</tr>
<tr>
<td>Materials</td>
<td>1175</td>
<td>Premium NEMA approved electric motor, 200 Horsepower and all required appurtenances. Includes materials and shipping only.</td>
<td>Each</td>
<td>$21,509.88</td>
<td>1</td>
<td>$21,509.88</td>
</tr>
</tbody>
</table>
Practice: 374 - Farmstead Energy Improvement
Scenario: #11 - Motor Upgrade 10 - 100 HP

Scenario Description:
The typical scenario consists of replacing an existing electric motor used to drive a ventilation fan, irrigation pumps, vacuum pump, or similar equipment involved with agricultural production with a new, high efficiency motor. The motor size is equal to or larger than 10 and less than or equal to 100 horsepower.

Before Situation:
The system is inefficient with a standard efficiency motor.

After Situation:
An on-farm energy audit has determined that energy use can be reduced through use of a NEMA premium motor. Associated practices/activities may include: 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: HP
Scenario Unit: Horse Power
Scenario Typical Size: 50
Scenario Cost: $5,872.05
Scenario Cost/Unit: $117.44

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skilled Labor</td>
<td>230</td>
<td>Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.</td>
<td>Hour</td>
<td>$27.06</td>
<td>8</td>
<td>$216.48</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor, electric, NEMA Premium, 50 HP</td>
<td>1173</td>
<td>Premium NEMA approved electric motor, 50 Horsepower and all required appurtenances. Includes materials and shipping only.</td>
<td>Each</td>
<td>$5,655.57</td>
<td>1</td>
<td>$5,655.7</td>
</tr>
</tbody>
</table>
Practice: 374 - Farmstead Energy Improvement
Scenario: #12 - Motor Upgrade > 1 and < 10 HP

Scenario Description:
The typical scenario consists of replacing an existing electric motor used to drive a ventilation fan, irrigation pumps, vacuum pump, or similar equipment involved with agricultural production with a new, high efficiency motor. The motor size is larger than 1 and less than 10 horsepower.

Before Situation:
The system is inefficient with a standard efficiency motor.

After Situation:
An on-farm energy audit has determined that energy use can be reduced through use of a NEMA premium motor. Associated practices/activities may include: 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: HP
Scenario Unit: Horse Power
Scenario Typical Size: 5

Scenario Cost: $816.27
Scenario Cost/Unit: $163.25

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skilled Labor</td>
<td>230</td>
<td>Labor requiring a high level skill set: Includes carpenters, welders, electricians,</td>
<td>Hour</td>
<td>$27.06</td>
<td>4</td>
<td>$108.24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conservation professionals involved with data collection, monitoring, and or record</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>keeping, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Motor, Electric, NEMA Premium,</td>
<td>1171</td>
<td>Premium NEMA approved electric motor, 5 Horsepower and all required appurtenances.</td>
<td>Each</td>
<td>$708.03</td>
<td>1</td>
<td>$708.03</td>
</tr>
<tr>
<td>5 HP</td>
<td></td>
<td>Includes materials and shipping only.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Scenario: 374 - Farmstead Energy Improvement

Scenario: #13 - Motor Upgrade ≤ 1 HP

Scenario Description:

The typical scenario consists of replacing an existing electric motor used to drive a ventilation fan, irrigation pumps, vacuum pump, or similar equipment involved with agricultural production with a new, high efficiency motor. The motor size is less than or equal to 1 horsepower.

Before Situation:

The system is inefficient with a standard efficiency motor.

After Situation:

An on-farm energy audit has determined that energy use can be reduced through use of a NEMA premium motor. Associated practices/activities may include: 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: Each

Scenario Unit: Each

Scenario Typical Size: 1

Scenario Cost: $541.99

Scenario Cost/Unit: $541.99

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Description</th>
<th>ID</th>
<th>Component Name</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>230</td>
<td>Skilled Labor</td>
<td>Hour</td>
<td>$27.06</td>
<td>4</td>
<td>$108.24</td>
</tr>
<tr>
<td>Materials</td>
<td>1169</td>
<td>Motor, electric, NEMA Premium, 1 HP</td>
<td>Each</td>
<td>$433.75</td>
<td>1</td>
<td>$433.75</td>
</tr>
</tbody>
</table>

FY2014 - compiled 12/3/2013
Practice: 374 - Farmstead Energy Improvement
Scenario: #14 - Heating - Radiant Tube

Scenario Description:
Replace "pancake" Brood Heaters in a poultry house with Radiant Tube Heaters. Replacement will require the materials and labor to remove existing heating system, re-plumb gas lines, cables and wench system to retrofit new radiant tube heaters, and miscellaneous items to complete the installation. Alternate acceptable radiant heating systems can include radiant brooders and quad radiant systems as evidenced by the energy audit. The typical scenario consists of the replacement of 28 brood heaters with 6 radiant tube heaters.

Before Situation:
Inefficient heat distribution equipment, such as conventional "pancake" brood heaters. The Pancake brooder, mounted at a low installation height, primarily warms the air. They provide a one-to-two foot perimeter at desired temperatures around each brooder. A large number of brooders are required to cover a significant percent of floor space. As the warmed air naturally rises it loses effectiveness for poultry on the ground.

After Situation:
Energy use is reduced through installation of a more efficient heater. Radiant tube heaters primarily warm objects within a direct line of sight (similar to the sun or an open fire). Air temperature is of relatively little importance for a radiant heating systems to be effective. As a result, radiant sytems are typically installed 5' or more above the floor level. This height extends the distribution of the radiant heat over a larger area than is possible with pancake style heaters. A roughly 16' diameter radiant heat zone heats over twice that of a conventional pancake brooder. Associated practices/activities may include: 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: Each
Scenario Unit: Each
Scenario Typical Size: 6

Scenario Cost: $8,512.32
Scenario Cost/Unit: $1,418.72

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skilled Labor</td>
<td>230</td>
<td>Labor requiring a high level skill set: Includes carpenters, welders, electricians,</td>
<td>Hour</td>
<td>$27.06</td>
<td>17</td>
<td>$460.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conservation professionals involved with data collection, monitoring, and or record</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>keeping, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater, radiant tube</td>
<td>1163</td>
<td>Radiant tube heater rated at 125,000 BTU/hour. Materials only.</td>
<td>Each</td>
<td>$1,342.05</td>
<td>6</td>
<td>$8,052.30</td>
</tr>
</tbody>
</table>
Practice: 374 - Farmstead Energy Improvement
Scenario: #15 - Heating (Building)

Scenario Description:
Replace existing low efficiency heaters with new high efficiency heaters. High-efficiency heating systems include any heating unit with efficiency rating of 80%+ for fuel oil and 90%+ for natural gas and propane. Applications may be air heating/building environment and hydronic (boiler) heating for agricultural operations, including under bench, or root zone heating. An alternative to heater replacement might be the addition of climate control system and electronic temperature controls with +/- 1 degree F differential, to reduce the annual run time.

Before Situation:
Buildings heated with low efficiency heaters or heaters without proper electronic climate controls

After Situation:
Higher efficiency heaters reduce energy consumption, energy costs, and GHG emissions. These replacement systems can be fueled by natural gas, propane, or fuel oil. Associated practices/activities: 122-AgEMP - HQ and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: Rating

Scenario Unit: 1000 BTU/Hour

Scenario Typical Size: 750

Scenario Cost: $6,632.52
Scenario Cost/Unit: $8.84

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Skilled Labor</td>
<td>230</td>
<td>Labor requiring a high level skill set: Includes carpenters, welders, electricians,</td>
<td>Hour</td>
<td>$27.06</td>
<td>17</td>
<td>$460.02</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conservation professionals involved with data collection, monitoring, and or record</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>keeping, etc.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Heater, high efficiency</td>
<td>1165</td>
<td>Natural gas, propane, or fuel oil unit heater or boiler and venting materials.</td>
<td>1,000 BTU/Hour</td>
<td>$8.23</td>
<td>750</td>
<td>$6,172.50</td>
</tr>
</tbody>
</table>
Practice: 374 - Farmstead Energy Improvement
Scenario: #16 - Attic Insulation

Scenario Description:
A typical scenario is the installation of a minimum 4-in depth of cellulose insulation in attic or ceiling to address energy loss. The increased insulation reduces seasonal heat loss and heat gain which reduces the respective need for heating and cooling equipment to operate.

Before Situation:
A poultry house with an inefficient building envelope with limited attic insulation.

After Situation:
A more effective and efficient building envelope can be created through addition of, or increased, attic insulation. Associated practices/activities: 122-AgEMP - HQ and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: Square Feet of Attic Insulated
Scenario Unit: Square Foot
Scenario Typical Size: 20,000

Scenario Cost: $13,600.00
Scenario Cost/Unit: $0.68

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation, Fiberglass or cellulose, R-15</td>
<td>1196</td>
<td>Fiberglass or cellulose insulation R-15, includes materials, equipment and labor to install.</td>
<td>Square Foot</td>
<td>$0.68</td>
<td>20000</td>
<td>$13,600.00</td>
</tr>
</tbody>
</table>
Practice: 374 - Farmstead Energy Improvement
Scenario: #17 - Wall Insulation

Scenario Description:
Enclose both sidewalls and endwalls from ceiling to floor in one of two manners: 1) metal exterior, 3.5” fiberglass batts (R-11), vapor barrier, & interior plywood or OSB sheathing, or 2) closed-cell polyurethane foam application (minimum 1” thickness (R-7) of 2.5 lbs/cu.ft. or higher density, (3.0 or higher density preferred) with a form of physical protective barrier on lower 2’ (may be 6 lbs/cu.ft. or higher density 1/8” thick foam, or treated lumber). Based on a 40’W x 500’L X 10H poultry house.

Before Situation:
A poultry house with an inefficient building envelope with limited wall insulation.

After Situation:
A more effective and efficient building envelope can be created through addition of, or increased, insulation. Associated practices/activities: may include 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: Square Feet of Wall Insulated

Scenario Unit: Square Foot

Scenario Typical Size: 10,800

Scenario Cost: $21,232.80
Scenario Cost/Unit: $1.97

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insulation, polyurethane, R-7, with sheathing skirt</td>
<td>1198</td>
<td>Closed-cell polyurethane foam insulation (minimum 1” thickness (R-7) with a protective sheathing barrier on lower 2 feet of wall height. Includes materials, equipment and labor to install.</td>
<td>Square Foot</td>
<td>$1.67</td>
<td>10800</td>
<td>$18,036.00</td>
</tr>
<tr>
<td>Insulation, Panel, R-11 with sheathing</td>
<td>1197</td>
<td>Insulated wall panel typically 3.5” fiberglass batts (R-11), vapor barrier and OSB sheathing, or equal, includes materials, equipment and labor to install.</td>
<td>Square Foot</td>
<td>$1.48</td>
<td>2160</td>
<td>$3,196.80</td>
</tr>
</tbody>
</table>
Practice: 374 - Farmstead Energy Improvement
Scenario: #18 - Sealant

Scenario Description:
A typical scenario is sealing the gaps between walls, gables, ceiling, etc. in a poultry house or greenhouse. Sealing is performed by a professional contractor, not merely use of spray foam from a can. The unit basis of payment in this scenario is each house based on 2400 linear feet of gap.

Before Situation:
An agricultural facility with an inefficient building envelope with gaps between walls, ceiling, etc. for a total of 2400 linear feet.

After Situation:
A more effective and efficient building envelope can be created through interior sealing of the exterior walls at the footer plate, eaves, ridge cap, and gable ends. The sealant reduces seasonal heat loss and heat gain due to infiltration which reduces the respective need for heating and cooling equipment to operate. Associated practices/activities: may include 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: Each house with estimated 2400 lf of gap

Scenario Unit: Each
Scenario Typical Size: 1

Scenario Cost: $3,480.00 Scenario Cost/Unit: $3,480.00

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sealant</td>
<td>1150</td>
<td>Greenhouse and building gap sealant. Performed by a professional contractor spraying the areas with an approved sealant for poultry production facilities. Includes materials, equipment and labor to install.</td>
<td>Foot</td>
<td>$1.45</td>
<td>2400</td>
<td>$3,480.00</td>
</tr>
</tbody>
</table>
Practice: 374 - Farmstead Energy Improvement
Scenario: #19 - Greenhouse Screens

Scenario Description:
The mechanical energy screen system consists of a drive motor, support cables, controls, and shade material, which may be woven, knitted, or non-woven strips of aluminum fiber, polyethylene, nylon or other synthetic material.

Before Situation:
Heating and cooling of an existing greenhouse is inefficient due to excessive heat loss and the fact that a greater volume of air is being heated than is necessary.

After Situation:
The greenhouse is fitted with a mechanically controlled energy screen installed truss-to-truss or gutter-to-gutter, with side screens as necessary, reducing heat loss in the greenhouse. Associated practices/activities: may include 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: Square Feet of Blanket
Scenario Unit: Square Foot
Scenario Typical Size: 25,000

Scenario Cost: $45,710.02 Scenario Cost/Unit: $1.83

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td>230</td>
<td>Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.</td>
<td>Hour</td>
<td>$27.06</td>
<td>17</td>
<td>$460.02</td>
</tr>
<tr>
<td>Materials</td>
<td>1148</td>
<td>Thermal blanket greenhouse screens: mechanical energy screen system consists of a drive motor, support cables, controls, and shade material, which may be woven, knitted, or non-woven. Size Range is 10,001 to 50,000 square feet. Materials only.</td>
<td>Square Foot</td>
<td>$1.81</td>
<td>25000</td>
<td>$45,250.00</td>
</tr>
</tbody>
</table>
Practice: 374 - Farmstead Energy Improvement

Scenario: #20 - Grain Dryer

Scenario Description:
A replacement continuous dryer rated for an appropriate rated bushel/per hour capacity for the operation that includes a microcomputer-based control system that adjusts the amount of time the crop remains in the dryer in order to achieve a consistent and accurate moisture content in the dried product. Alternate types of replacement dryers which reduce energy use are acceptable as evidenced by the energy audit. The typical operation requires a rated capacity of 860 bushels per hour.

Before Situation:
Wet crop is loaded in the top of a horizontal, continuous dryer. Dried crop is augured from the bottom of the dryer. The heated air from the unit's burners passes from the burner plenum through the grain. An on-farm energy audit has identified inefficient manual control of the dryer where the operator controls the plenum temperature and the discharge auger speed to achieve the desired final moisture content. Moisture content is based on measurement of grain leaving the dryer. The plenum temperature setting depends on the moisture content of crop with a typical value of 220 F. The burner cycles on and off, automatically, as necessary to maintain the plenum temperature selected by the operator.

After Situation:
Energy use is reduced through installation of a more efficient continuous dryer that uses a microcomputer-based controller to reduce overdrying and total time of operation. Associated practices/activities may include: 122-AgEMP - HQ, and other activities within 374-Farmstead Energy Improvement. The resource concern is inefficient use of energy in the farm operation which increases dependence on non-renewable energy sources and can be addressed through improved energy efficiency. Any improvements are based on a Type 2 energy audit meeting the requirements of ASABE S612.

Scenario Feature Measure: Rated capacity of the dryer

Scenario Unit: Bushels/Hour

Scenario Typical Size: 860

Scenario Cost: $74,674.58

Scenario Cost/Unit: $86.83

Cost Details (by category):

<table>
<thead>
<tr>
<th>Component Name</th>
<th>ID</th>
<th>Component Description</th>
<th>Unit</th>
<th>Price ($/unit)</th>
<th>Quantity</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Labor</td>
<td></td>
<td>Labor requiring a high level skill set: Includes carpenters, welders, electricians, conservation professionals involved with data collection, monitoring, and or record keeping, etc.</td>
<td>Hour</td>
<td>$27.06</td>
<td>17</td>
<td>$460.02</td>
</tr>
<tr>
<td>Materials</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grain dryer, Centrifugal, 24'</td>
<td>1161</td>
<td>Grain dryer, 24 foot Centrifugal with rated capacity of 860 bushels/hr. Materials only.</td>
<td>Bushels per Hour</td>
<td>$89.97</td>
<td>172</td>
<td>$15,474.84</td>
</tr>
<tr>
<td>Grain dryer, Axial, 16'</td>
<td>1159</td>
<td>Grain dryer, 16 foot Axial with rated capacity of 600 bushels/hour. Materials only.</td>
<td>Bushels per Hour</td>
<td>$78.54</td>
<td>172</td>
<td>$13,508.88</td>
</tr>
<tr>
<td>Grain dryer, Axial 28'</td>
<td>1162</td>
<td>Grain dryer, 28 foot Axial with rated capacity of 990 bushels/hr. Materials only.</td>
<td>Bushels per Hour</td>
<td>$87.99</td>
<td>172</td>
<td>$15,134.28</td>
</tr>
<tr>
<td>Grain dryer, Axial, 12'</td>
<td>1158</td>
<td>Grain dryer, 12 foot Axial with rated capacity of 460 bushels/hour. Materials only.</td>
<td>Bushels per Hour</td>
<td>$90.97</td>
<td>172</td>
<td>$15,646.84</td>
</tr>
<tr>
<td>Grain dryer, Centrifugal, 20'</td>
<td>1160</td>
<td>Grain dryer, 20 foot Centrifugal with rated capacity of 785 bushels/hour. Materials only.</td>
<td>Bushels per Hour</td>
<td>$84.01</td>
<td>172</td>
<td>$14,449.72</td>
</tr>
</tbody>
</table>