NATURAL RESOURCES CONSERVATION SERVICE CONSERVATION PRACTICE STANDARD # COVER CROP (Ac.) #### **CODE 340** #### **DEFINITION** Grasses, legumes, and forbs planted for seasonal vegetative cover. #### **PURPOSE** This practice is applied to support one or more of the following purposes: - Reduce erosion from wind and water. - Maintain or increase soil health and organic matter content. - Reduce water quality degradation by utilizing excessive soil nutrients. - Suppress excessive weed pressures and break pest cycles. - Improve soil moisture use efficiency. - Minimize soil compaction. ## **CONDITIONS WHERE PRACTICE APPLIES** All lands requiring seasonal vegetative cover for natural resource protection or improvement. #### **CRITERIA** #### **General Criteria Applicable to All Purposes** Cover crops may be established between successive production crops, or companion-planted or relayplanted into production crops. Select species and planting dates that will not compete with the production crop yield or harvest. Select species that are compatible with other components of the cropping system. Plant species, seedbed preparation, seeding rates, seeding dates, seeding depths, and planting methods will be consistent with applicable local criteria and soil/site conditions. See Appendix A (Cover Crops) located in the electronic Field Office Technical Guide (eFOTG) Section IV, Appendices for seeding information. Ensure that plants are not listed as noxious or invasive weeds species for Ohio. Seed will be labeled and/or tested according to Ohio Department of Agriculture seed regulations. All seed that is used, if not labeled with a seed test/tag, must be tested prior to use. The seed test must include percent purity, percent germination, percent weed seed and a listing of any Ohio noxious or invasive weeds contained within the sample. If the seed test lists any noxious or invasive weeds the seed must be cleaned to remove the weeds and retested before use until the test comes back with no noxious or invasive weeds listed. Determine the method and timing of termination to meet the grower's objective and the current NRCS Cover Crop Termination Guidelines. Ensure herbicides used with crops are compatible with cover crop selections and purpose(s). When a cover crop will be grazed or hayed ensure that crop selection(s) comply with pesticide label rotational crop restrictions and that the planned management will not compromise the selected conservation purpose(s). Do not harvest cover crops for seed. If the purpose of the seeding is to harvest seed for any reason used Conservation Practice Standard Conservation Crop Rotation (328) instead. Do not burn cover crop residue. If the specific rhizobium bacteria for the selected legume are not present in the soil, treat the seed with the appropriate inoculum at the time of planting. # Additional Criteria to Reduce Erosion from Wind and Water Time the cover crop establishment in conjunction with other practices to adequately protect the soil during the critical erosion period(s). Select cover crops that will have the physical characteristics necessary to provide adequate erosion protection. Use the current erosion prediction technology to determine the amount of surface and/or canopy cover needed from the cover crop to achieve the erosion objective. # Additional Criteria to Maintain or Increase Soil Health and Organic Matter Content Cover crop species will be selected on the basis of producing higher volumes of organic material and root mass to maintain or increase soil organic matter. The planned crop rotation including the cover crop and associated management activities will score a Soil Conditioning Index (SCI) value > 0, as determined using the current approved NRCS Soil Conditioning Index (SCI) procedure, with appropriate adjustments for additions to and or subtractions from plant biomass. The cover crop shall be planted as early as possible and be terminated as late as practical for the producer's cropping system to maximize plant biomass production, considering crop insurance criteria, the time needed to prepare the field for planting the next crop, and soil moisture depletion. # Additional Criteria Reduce Water Quality Degradation by Utilizing Excessive Soil Nutrients Establish cover crops as soon as practical prior to or after harvest of the production crop. (i.e. before or after harvest). Select cover crop species for their ability to effectively utilize nutrients throughout the expected period(s) of nutrient loss. For crop rotations that utilize cover crops during the winter months establish cover crops species that will overwinter. If cover crop mixes are being used at least ½ of the proportional seeding rate must be species that over-winter. Terminate the cover crop as late as practical to maximize plant biomass production and nutrient uptake. Practical considerations for termination date may include crop insurance criteria, the amount of time needed to prepare the field for planting the next crop, weather conditions, and cover crop effects on soil moisture and nutrient availability to the following crop. If the cover crop will be harvested for feed (hay/balage/etc.), choose species that are suitable for the planned livestock, and capable of removing the excess nutrients present. # Additional Criteria to Suppress Excessive Weed Pressures and Break Pest Cycles Select cover crop species for their life cycles, growth habits, and other biological, chemical and or physical characteristics to provide one or more of the following: - · To suppress weeds, or compete with weeds. - Break pest life cycles or suppress of plant pests or pathogens. - · Provide food or habitat for natural enemies of pests. - Release compounds such as glucosinolates that suppress soil borne pathogens or pests. Select cover crop species that do not harbor pests or diseases of subsequent crops in the rotation. To suppress weeds, cover crop residues will be left on the soil surface to maximize allelopathic (chemical) and mulching (physical) effects. # Additional Criteria to Improve Soil Moisture Use Efficiency Cover crops established for moisture conservation shall be left on the soil surface. In areas of potential excess soil moisture, allow the cover crop to grow as long as possible to maximize soil moisture removal. In lower water holding capacity soils terminate growth of the cover crop sufficiently early to conserve soil moisture for the subsequent crop. # **Additional Criteria to Minimize Soil Compaction** Select cover crop species that have the ability to root deeply and the capacity to penetrate or prevent compacted layers. Cover crop species that will produce deep roots and large amounts of surface or root biomass to increase soil organic matter, improve soil structure, and increase soil moisture through better infiltration are the species used to minimize soil compaction. The conservation plan will include other needed practices and/or management techniques to minimize future compaction. Field operations and grazing will be limited to times with ideal soil conditions when practical. #### **CONSIDERATIONS** Plant cover crops in a timely matter and when there is adequate moisture to establish a good stand. When applicable, ensure cover crops are managed and are compatible with the client's crop insurance criteria. Maintain an actively growing cover crop as late as feasible to maximize plant growth, allowing time to prepare the field for the next crop and to optimize soil moisture. Select cover crops that are compatible with the production system, well adapted to the region's climate and soils, and resistant to prevalent pests, weeds, and diseases. Avoid cover crop species that harbor or carry over potentially damaging diseases or insects. Cover crops may be used to improve site conditions for establishment of perennial species. When cover crops are used for grazing, select species that will have desired forage traits, be palatable to livestock, and not interfere with the production of the subsequent crop. Use plant species that enhance forage opportunities for pollinators by using diverse legumes and other forbs. Cover crops may be selected to provide food or habitat for natural enemies of production crop pests. Cover crops residues should be left on the soil surface to maximize allelopathic (chemical) and mulching (physical) effects. Seed a higher density cover crop stand to promote rapid canopy closure and greater weed suppression. Increased seeding rates (1.5 to 2 times normal) can improve weed-competitiveness. Cover crops may be selected that release biofumigation compounds that inhibit soil-borne plant pests and pathogens. Species can be selected to serve as trap crops to divert pests from production crops. Select a mixture of two or more cover crop species from different plant families to achieve one or more of the following: (1) species mix with different maturity dates, (2) attract beneficial insects, (3) attract pollinators, (4) increase soil biological diversity, (5) serve as a trap crop for insect pests, or (6) provide food and cover for wildlife habitat management. Plant legumes or mixtures of legumes with grasses, crucifers, and/or other forbs to achieve biological nitrogen fixation. Select cover crop species or mixture, and timing and method of termination that will maximize efficiency of nitrogen utilization by the following crop, considering soil type and conditions, season and weather conditions, cropping system, C:N ratio of the cover crop at termination, and anticipated nitrogen needs of the subsequent crop. Use LGU- recommended nitrogen credits from the legume and reduce nitrogen applications to the subsequent crop accordingly. Time the termination of cover crops to meet nutrient release goals. Termination at early vegetative stages may cause a more rapid release compared to termination at a more mature stage. Both residue decomposition rates and soil fertility can affect nutrient availability following termination of cover crops Allelopathic effects to the subsequent crop should be evaluated when selecting the appropriate cover crop. Legumes add the most plant-available N if terminated when about 30% of the crop is in bloom. Use a diverse mixture of cover crop species to address multiple purposes ## Additional Considerations to Reduce Erosion by Wind or Water To reduce erosion, best results are achieved when the combined canopy and surface residue cover attains 90 percent or greater during the period of potentially erosive wind or rainfall. # Additional Considerations to Reduce Water Quality Degradation by Utilizing Excessive Soil Nutrients Use deep-rooted species to maximize nutrient recovery. When appropriate for the crop production system, mowing certain grass cover crops (e.g., sorghum-sudangrass, pearl millet) prior to heading and allowing the cover crop to regrow can enhance rooting depth and density, thereby increasing their subsoiling and nutrient-recycling efficacy. # Additional Considerations to Increase Soil Health and Organic Matter Content Increase the diversity of cover crops (e.g., mixtures of several plant species) to promote a wider diversity of soil organisms, and thereby promote increased soil organic matter. Plant legumes or mixtures of legumes with grasses, crucifers, and/or other forbs to provide nitrogen through biological nitrogen fixation. Legumes add the most plant-available N if terminated when about 30% of the crop is in bloom. #### PLANS AND SPECIFICATIONS Prepare plans and specifications for each field or treatment unit according to the planning criteria and operation and maintenance requirements of this standard. Specifications shall describe the requirements to apply the practice to achieve the intended purpose for the practice site. Plans for the establishment of cover crops shall, as a minimum, include the following specification components in an approved Cover Crop, 340, Implementation Requirements document: - Field number and acres - Species of plant(s) to be established. - Seeding rates. - Seeding dates. - Establishment procedure. - Rates, timing, and forms of nutrient application (if needed). - Dates and method to terminate the cover crop. - Other information pertinent to establishing and managing the cover crop e.g., if haying or grazing is planned specify the planned management for haying or grazing. #### **OPERATION AND MAINTENANCE** Evaluate the cover crop to determine if the cover crop is meeting the planned purpose(s). If the cover crop is not meeting the purpose(s) adjust the management, change the species of cover crop, or choose a different technology. #### **REFERENCES** A. Clark (ed.). 2007. Managing cover crops profitably. 3rd ed. Sustainable Agriculture Network Handbook Series: bk 9. Hargrove, W.L., ed. Cover crops for clean water. SWCS, 1991. Magdoff, F. and H. van Es. Cover Crops. 2000. p. 87-96 *In* Building soils for better crops. 2nd ed. Sustainable Agriculture Network Handbook Series; bk 4. National Agriculture Library. Beltsville, MD. Reeves, D.W. 1994. Cover crops and erosion. p. 125-172 *In* J.L. Hatfield and B.A. Stewart (eds.) Crops Residue Management. CRC Press, Boca Raton, FL. NRCS Cover Crop Termination Guidelines: http://www.nrcs.usda.gov/wps/portal/nrcs/detail/national/climatechange/?cid=stelprdb1077238 Revised Universal Soil Loss Equation Version 2 (RUSLE2) website: http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/tools/rusle2/ Wind Erosion Prediction System (WEPS) website: http://www.nrcs.usda.gov/wps/portal/nrcs/main/national/technical/tools/weps/ USDA, Natural Resources Conservation Service, National Agronomy Manual, 4th Edition, Feb. 2011. Website: http://directives.sc.egov.usda.gov/ Under Manuals and Title 190.