Natural Resources Conservation Service

CONSERVATION PRACTICE STANDARD

FOREST STAND IMPROVEMENT

Code 666

(Ac.)

DEFINITION
The manipulation of species composition, stand structure, or stand density by cutting or killing selected trees or understory vegetation to achieve desired forest conditions or obtain ecosystem services.

PURPOSE
- Improve and sustain forest health and productivity
- Reduce damage from pests and moisture stress
- Initiate forest stand regeneration
- Reduce fire risk and hazard and facilitate prescribed burning
- Restore or maintain natural plant communities
- Improve wildlife and pollinator habitat
- Alter quantity, quality, and timing of water yield
- Increase or maintain carbon storage

CONDITIONS WHERE PRACTICE APPLIES
All land where the quantity and quality of trees can be enhanced.

CRITERIA

General Criteria Applicable to All Purposes
Describe the extent or size and orientation of treatment area(s).

Identify and retain preferred tree and understory species to achieve all planned purposes and landowner objectives.

Use available guidelines for species and species groups to determine spacing, density, size-class distribution, number of trees, and amount of understory species to be retained. Schedule treatments to avoid overstocked conditions using approved silvicultural/stocking guides.

Describe the current and desired future condition of each stand that will be treated. Include the species, cover type, and size-class distribution. Stocking will be described in terms of crop trees per acre, basal area per acre, trees per acre, between-tree spacing, or by any other appropriate and professionally accepted density or stocking protocol.

Refer to WIN-PST criteria in NRCS Conservation Practice Standard (CPS) Code 595, Integrated Pest Management, and comply with applicable State and local laws if an herbicide will be used.

Conservation practice standards are reviewed periodically and updated if needed. To obtain the current version of this standard, contact your Natural Resources Conservation Service State office or visit the Field Office Technical Guide.
Time tree felling to avoid buildup of insect or disease populations.

Implement forest stand improvement activities in ways that avoid or minimize soil erosion, compaction, rutting, and damage to remaining vegetation, and that maintain hydrologic conditions. Protect site resources by selecting the method, felling direction and timing of tree felling, and heavy equipment operation. For temporary access use NRCS CPS Code 655, Forest Trails and Landings, to protect soil and site resources from vehicle impacts.

Use NRCS CPS Code 560, Access Road, for more heavily used roads associated with forest stand improvement activities.

Where slash and debris will be generated, appropriately treat slash and debris, as necessary, to assure that it will not present an unacceptable fire, safety, environmental, or pest hazard. Remaining woody material will be placed so that it does not interfere with the intended purpose or other management activities. Do not burn vegetative residues except where fire hazard or threats from diseases and insects are of concern or when other management objectives are best achieved through burning. When slash and other debris will be burned onsite use NRCS CPS Code 338, Prescribed Burning.

Comply with State best management practices for water quality.

Effects on listed threatened and endangered species (e.g. roosting bats) must be addressed as part of practice implementation. Timing of activities, trees to be manipulated and methods used shall not adversely affect threatened and endangered species.

Additional Criteria to Improve and Sustain Forest Health and Productivity

Treatments, including woody biomass removal, will be sustainable and will not compromise soil organic matter, the recruitment and retention of coarse woody debris, or wildlife habitat. If applicable, use biomass harvesting guidelines (The Forest Guild, 2010) and/or State guidance.

Manipulate stand characteristics to mitigate risk of insects and disease. Examples of stand manipulations include creating a diversity of tree species and a mosaic of age classes.

Additional Criteria to Reduce Fire Risk and Hazard and Facilitate Prescribed Burning

Reduce stocking rates and alter spatial arrangement of trees to minimize crown-to-crown spread of fire.

Use criteria for wildfire risk and damage reduction, including reduction of ladder fuels, in NRCS CPS 394, Firebreak, as appropriate.

Additional Criteria to Improve Wildlife and Pollinator Habitat

Manage for specific or a variety of cover types, species, size-classes, and stocking rates at the appropriate scale that meet desired wildlife habitat requirements.

Create, recruit, and maintain sufficient snags, nest, cavity, and den trees, and down woody material to meet requirements of desired species.

Use habitat creation and maintenance criteria in NRCS CPS Codes 647, Early Successional Habitat Development/Management; Code 643, Restoration and Management of Rare and Declining Habitats; Code 645, Upland Wildlife Habitat Management; or Code 644, Wetland Wildlife Habitat Management, as appropriate, to manage wildlife-related activities.
Additional Criteria to Alter Quantity, Quality and Timing of Water Yield

Create a mosaic of age classes to increase water yield and stabilize seasonal water yield from watersheds.

Create openings in the forest canopy to allow more light to reach the ground, stimulating understory vegetation and diversifying plant species composition and vertical structure. These improvements will increase rainfall infiltration and reduce runoff thereby reducing soil erosion and improving water quality.

Additional Criteria to Increase Carbon Storage

Manage for tree species and stocking rates that have higher rates of growth and potential for carbon sequestration.

CONSIDERATIONS

Considerations for Wildlife and Pollinator Habitat

State Wildlife Habitat Guidelines, Wildlife Habitat Evaluation Procedure, and Forestland Assessment Scorecard are useful tools in planning forest stand improvement.

Consider removing vines from crop trees but retaining vines with wildlife value (e.g., grape and poison ivy) on noncrop trees.

Increase quantity and quality of important mast (seeds, catkins, fruits, and nuts) sources for wildlife through crop tree management and other techniques.

Improve horizontal diversity or patchiness (of different age class units) across the forest for a variety of wildlife.

Improve or maintain vertical structure or vegetative layering in treated stands.

Favor declining wildlife species by providing appropriately sized treatment areas or blocks of habitat.

Time forest stand improvement activities to minimize disturbance of seasonal pollinator and wildlife activities, such as nesting, movement, etc.

Considerations for Improving and Sustaining Forest Health and Productivity

Consider crop tree management (Perkey et al. 1994) when making decisions about which trees to retain and which to cut, kill cut, or kill.

If available use sanitation-salvage and risk-rating criteria to determine trees to remove during forest stand improvement operations (see Thinning and Sanitation in Donaldson and Seybold 1998).

Silvicultural objectives and harvest-regeneration strategies may change over time and may be limited by prior management.

Consider enlisting the assistance of a professional forester when seeking to rehabilitate degraded stands that have been repeatedly subjected to exploitative harvesting (high-grading). Often a complex site-specific treatment plan must be developed to overcome repeated exploitative timber harvest.

Successful regeneration of desirable species is usually dependent upon timely application of forest stand improvement and other practices, such as prescribed burning, site preparation, tree and shrub establishment, prescribed grazing, and access control.
The extent, timing, size of treatment area, or intensity of the practice application, should be adjusted to minimize cumulative effects (onsite and offsite), such as hydrologic and stream alteration, habitat fragmentation, nutrient cycling, biodiversity, and visual resources.

Consider retaining at least 1/4 to 1/3 of the slash, tops, and limbs after harvest to protect site productivity. When using whole-tree harvesting systems minimize the removal of needles or leaves by harvesting in the dormant season, retaining fine woody materials onsite, or leaving felled trees onsite to allow for needle or leaf drop.

Consider controlling invasive plants if they are encountered while conducting forest stand improvement. Use NRCS CPS Codes 314, Brush Management; or 315, Herbaceous Weed control, as appropriate.

When available, report the minimum criteria (diameter at breast height, log length, etc.) for commercial forest products (sawtimber, pulpwood, etc.) in order to know when to direct a client to a professional forester.

Consider advising landowners to secure a written contract with a service provider that specifically describes the extent of activity, duration of activity, liability and responsibilities of each party, and amount and timing of payments for services provided.

Considerations for Increasing Carbon Storage

To increase carbon storage, consider shifting from even-aged to uneven-aged management to increase the retention of carbon onsite. Use regeneration methods that encourage advanced regeneration and retention of mature trees, such as shelterwood, to retain carbon onsite for longer periods. Consider retaining snags and downed woody debris for additional onsite carbon storage, and adopt techniques for maintaining soil quality, including organic carbon retention.

To grow trees that can store carbon in durable manufactured products, consider lengthening rotations to retain mature trees longer and grow to larger sizes; also consider using crop tree management techniques (Perkey et al. 1994) to concentrate growth on suitable long-lived species.

Considerations for Visual Quality

When forest stand improvement is being used to improve visual quality consider leaving trees that are attractive in shape and structure or flower and are appropriate to the site, especially around structures, roads, and home sites.

PLANS AND SPECIFICATIONS

Plans and specifications for applying this practice shall be prepared for each site and recorded using approved specification sheets, implementation requirements (job sheets), technical notes, and narrative statements in the conservation plan, or other acceptable documentation. Clearly state the goals and objectives of the forest stand improvement. Specific stand-stocking guidelines will clearly document both the pre- and post-treatment stand condition.

OPERATION AND MAINTENANCE

Prepare an Operation and Maintenance plan for the site and review it with the operator. The plan will describe actions that must be taken to ensure that the practice is applied correctly during its design life. As a minimum, include periodic inspections for assessment of insects, disease, and other pests, storm damage, and damage by trespass. Use NRCS CPS Code 655, Forest Trails and Landings, to control erosion on forest roads, skid trails, landings, and adjacent areas by installing/maintaining vegetative and structural practices. Address damage caused by, ice wind or storms as needed. Treatments needed for pests—see Additional Criteria to Improve and Sustain Forest Health and Productivity section in this

REFERENCES

