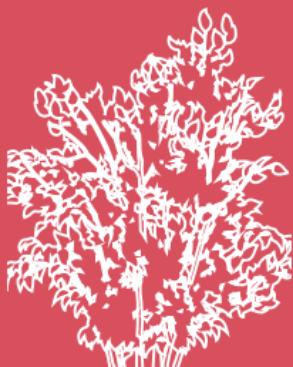




Forest Service  
U.S. DEPARTMENT OF AGRICULTURE


Northern  
Research Station

Eastern Region  
State & Private Forestry

R9-TP-001-22  
June 2022

# INVASIVE PLANTS FIELD & REFERENCE GUIDE:

An Ecological Perspective of  
Plant Invaders of  
Forests & Woodlands





*Berberis thunbergii* invading a disturbed forest.  
USDA Forest Service photo by Cynthia Huebner.

# **INVASIVE PLANTS FIELD & REFERENCE GUIDE:**

## **An Ecological Perspective of Plant Invaders of Forests & Woodlands**

**Cynthia D. Huebner<sup>1,2</sup>  
with Toni Jones<sup>3</sup>**

<sup>1</sup> Author for Correspondence  
(cynthia.d.huebner@usda.gov)

<sup>2</sup> USDA Forest Service  
Northern Research Station  
Morgantown, WV 26505

<sup>3</sup> USDA Forest Service  
Eastern Region  
State & Private Forestry  
Morgantown, WV 26505

**Published by:**  
United States  
Department of Agriculture  
Forest Service  
Northern Research Station  
[www.nrs.fs.usda.gov](http://www.nrs.fs.usda.gov)

Eastern Region  
State & Private Forestry  
[www.fs.usda.gov/r9](http://www.fs.usda.gov/r9)

R9-TP-001-22  
June 2022

# INTRODUCTION

## Purpose of this Field Guide:

There are many field guides available about invasive plants and their identification. The purpose of this field guide is to give a brief scientific synthesis of what is known about the behavior of select invasive species in managed, disturbed, and pristine forested systems. It also provides key information for accurate identification. Such information will be helpful when prioritizing research questions and choosing the best control strategies. Control methods for each species are not provided. The most successful control methods are most often site-specific; overgeneralizing control methods might lead to poor management and frustrating outcomes. This is not to say that the information that is available should not be used; this guide just could not do it justice and still achieve its primary goals.

## Four Goals:

1. While there is a great deal of publicly available information about many invasive plants, much of this information lacks corresponding citations for verification. The first goal of this guide is to help provide such information, using mostly peer-reviewed scientific publications and other primary sources. If information about a species provided in other guides or web pages could not be verified by valid sources, it was not included in the species description.
2. Despite the first goal's scientific nature, the second goal is to make this book accessible to a variety of people, including private landowners and managers as well as researchers. This is done by providing simple, cursory descriptions that can then be read about in more detail (if desired) using the corresponding citations. Relevant botanical terms and phrases are defined in the Glossary.
3. The third goal is to emphasize the dynamic nature of invasions and science. Species will be updated, and new ones added from a prioritized list of invaders, as funding and time allow.
4. The last goal is to provide a true-to-form field guide that can be used extensively in field situations. This required the book to have small, weatherproof, interchangeable pages that allow users to organize for specific field conditions and add new species pages when available.

## **A Collaborative Effort:**

The U.S. Department of Agriculture Forest Service recognizes the threat of invasive plant species to public and private forests is serious. Successful progress in prevention, control, research, and restoration from the negative impacts of such invasions is only possible using a concerted and organized effort. This guide is a collaboration between the Forest Service Eastern Region and Northern Research Station; it was made possible with the guidance and support of Noel Schneeberger, Don Dagnan, John Kyhl, Nancy Berlin, Jan Schultz, Sierra Dawkins, and several botanists (see Acknowledgements).

## **Guide Organization:**

This guide contains at least 30 species of potential invaders threatening forests of various ages—ranging from recently harvested forests or woodlands to old-growth forests. New plants will be added from an evolving list of 50 species.

Species lists are provided by both scientific and common names and will be updated as needed. In lieu of page numbers, this guide is organized by habit type (herb, vine, shrub, or tree) and then by species scientific name (in alphabetical order) to easily accommodate adding new species. Each species description presents only the most common Latin synonyms. Citations are noted in the text with a small number that corresponds to its entry in the species' citations list at the back of the guide (after the Glossary, ordered by habit and species' scientific names). Photograph information is provided at the end of each citations list.

Comments are welcomed and can be made by contacting the Author of Correspondence Cynthia D. Huebner. Additionally, both the Forest Service Eastern Region and Northern Research Station websites will be updated when new species are available.

## **INTRODUCTION**

# INTRODUCTION

## Acknowledgements:

The author of this guide appreciates the following people and their contributions to this project:

Eastern Region botanists/ecologists: Sierra Dawkins, Mary Beth Deller, Marquita Sheehan, Jack Greenlee, Erin Larson, Kirk Larson, April Moore, Harry Pawelczyk, Jan Schultz, and Ian Shackleford, for their comments.

Cassandra Kurtz and William McWilliams (Forest Service Forest Inventory and Analysis), John Moredock (West Virginia University, graduate student), and P.J. Harmon (West Virginia Department of Natural Resources), who provided useful comments and support for the project.

Michelle Frank, Rick Turcotte, Donna Foster, Heather Smith, and Yun Wu, from the Eastern Region, for their comments.

Eastern Region's Deborah Muccio for the redesign and layout, Sandy Clark for edits, Judy Mannix for detailed edits and insightful comments, and Cheryl Holbrook for recommending presentation enhancements.

**Note:** Due to the use of non-weatherproof paper, the glossary and citations pages should be removed before taking this booklet outdoors.



## HERBS

*Aegopodium podagraria* – goutweed  
*Alliaria petiolata* – garlic mustard  
*Cirsium arvense* – Canada thistle  
*Fallopia japonica* – Japanese knotweed  
*Heracleum mantegazzianum* – giant hogweed  
*Imperata cylindrica* – cogongrass  
*Lespedeza cuneata* – Chinese lespedeza  
*Microstegium vimineum* – Japanese stiltgrass  
*Miscanthus sinensis* – eulalia  
*Ranunculus ficaria* – lesser celandine  
*Rumex acetosella* – sheep sorrel



## VINES

*Akebia quinata* – chocolate vine  
*Celastrus orbiculatus* – oriental bittersweet  
*Lonicera japonica* – Japanese honeysuckle  
*Persicaria perfoliata* – mile-a-minute weed  
*Pueraria montana* var. *lobata* – kudzu vine  
*Vinca minor* – common periwinkle  
*Vincetoxicum nigrum* – black swallow-wort



## SHRUBS

*Berberis thunbergii* – Japanese barberry  
*Elaeagnus umbellata* – autumn olive  
*Euonymus alatus* – winged burning bush  
*Ligustrum sinense* – Chinese privet  
*Lonicera maackii* – Amur honeysuckle, bush honeysuckle  
*Rhamnus cathartica* – common buckthorn  
*Rosa multiflora* – multiflora rose  
*Rubus phoenicolasius* – wineberry



## TREES

*Acer platanoides* – Norway maple  
*Ailanthus altissima* – tree of heaven  
*Paulownia tomentosa* – princess tree  
*Pyrus calleryana* – Callery pear

## SPECIES LIST BY SCIENTIFIC NAME

# SPECIES LIST BY COMMON NAME



## HERBS

- Canada thistle – *Cirsium arvense*
- Chinese lespedeza – *Lespedeza cuneata*
- Cogongrass – *Imperata cylindrica*
- Eulalia – *Misanthus sinensis*
- Garlic mustard – *Alliaria petiolata*
- Giant hogweed – *Heracleum mantegazzianum*
- Goutweed – *Aegopodium podagraria*
- Japanese knotweed – *Fallopia japonica*
- Japanese stiltgrass – *Microstegium vimineum*
- Lesser celandine – *Ranunculus ficaria*
- Sheep sorrel – *Rumex acetosella*



## VINES

- Black swallow-wort – *Vincetoxicum nigrum*
- Chocolate vine – *Akebia quinata*
- Common periwinkle – *Vinca minor*
- Japanese honeysuckle – *Lonicera japonica*
- Kudzu vine – *Pueraria montana* var. *lobata*
- Mile-a-minute weed – *Persicaria perfoliata*
- Oriental bittersweet – *Celastrus orbiculatus*



## SHRUBS

- Amur honeysuckle, bush honeysuckle – *Lonicera maackii*
- Autumn olive – *Elaeagnus umbellata*
- Chinese privet – *Ligustrum sinense*
- Common buckthorn – *Rhamnus cathartica*
- Japanese barberry – *Berberis thunbergii*
- Multiflora rose – *Rosa multiflora*
- Wineberry – *Rubus phoenicolasius*
- Winged burning bush – *Euonymus alatus*



## TREES

- Callery pear – *Pyrus calleryana*
- Norway maple – *Acer platanoides*
- Princess tree – *Paulownia tomentosa*
- Tree of heaven – *Ailanthus altissima*



**Habit:** Erect, branched, rhizomatous, herbaceous perennial; 40-100 cm (16-39 in) tall.<sup>7</sup>

**Reproduction:** Vegetative by long-lived rhizomes forming clones;<sup>1,10,11</sup> also by seed<sup>19</sup> but recruitment by seed may be rare.<sup>11</sup>

**Leaves:** Lower mostly biennial with 9 leaflets (some irregular), and petioles longer than blades; leaflets are oblong to ovate, sharply serrate, 3-8 cm (1-3 in) long;<sup>7</sup> upper leaves are smaller, mostly once-ternate<sup>7</sup> with petioles shorter than blades;<sup>13</sup> rachis of leaf not winged.<sup>13</sup>

**Stems:** Alternate and glabrous.<sup>7,16</sup>

**Flowers:** Late spring to early summer;<sup>15</sup> dense umbel, 6-12 cm (2 1/4-4 3/4 in) wide, 15-25 subequal rays; petals white, no sepals.<sup>7,13</sup>

**Fruits/Seeds:** Schizocarp not winged or prominently ribbed;<sup>13</sup> 3-4 mm (~1/8 in) long; each fruit usually with two seeds dispersed late summer; morphophysiological dormancy,<sup>18</sup> the underdeveloped embryo requires extended cold period to germinate;<sup>8,9</sup> radicles emerge in Jan., doing best with 116 days at 4-5 °C (39-41 °F) followed by 7 days of 15 °C (59 °F) during day and 5 °C (41 °F) at night, and cotyledons emerge in Mar., doing best with 11 days alternating day/night temperatures of 25/15 °C (77/59 °F);<sup>12</sup> seed bank documented at 15 years.<sup>4</sup>

## GOOTWEED

*Aegopodium podagraria* L.

APIACEAE

HERB

## *Aegopodium podagraria* **GOOTWEED**

**Habitat:** Native to Europe and Northern Asia;<sup>17</sup> moist, partial shade preferred;<sup>7</sup> USDA hardiness zones 4-8, performs best in zone 8 within shade.<sup>15</sup>

**Comments:** Most horticultural forms have white-margined leaves<sup>7</sup> and may be less aggressive than the invasive wildtype;<sup>5</sup> non-variegated and wild forms have higher rates of photosynthesis in shade but not full sun;<sup>14</sup> in more northern latitudes produces more shoot biomass than in southern latitudes, possibly an adaptation to a shorter growing season; in shady environments depends more on resources shared through rhizome connections,<sup>11</sup> is less apt to produce seeds,<sup>6</sup> and puts more energy into below ground biomass and storage compared to open environments;<sup>3</sup> as common name implies, once used to treat gout, but other medicinal plants possibly more effective.<sup>2</sup>

**Similar Native Species:** Golden alexander (*Zizia aurea*) but leaves more finely serrate, flowers bright yellow, fruit prominently ribbed.<sup>13</sup>





**Habit:** Erect biennial herb;<sup>16</sup> second-year stalks up to ~1 m (3 ft).<sup>5,14,16</sup>

**Reproduction:** By seed;<sup>16</sup> prefers outcrossing but may self.<sup>8</sup>

**Leaves:** Lower—kidney-shaped, palmate venation, 2-12 cm (¾-4¾ in) long, form a basal rosette in first year that persists through winter; upper—alternate, triangular, toothed.<sup>5,14,16,30</sup>

**Stems:** One flowering stem per rosette, but up to 6 possible;<sup>5,34</sup> may branch.<sup>5,14,16</sup>

**Flowers:** Second year, late Apr.-June;<sup>16,30</sup> numerous 5-7 mm (¼ in) diameter, white, 4-petaled; most in cluster at top of stalk (opening from bottom to top), but some in leaf axils;<sup>5,16</sup> open 2-3 days, but produce nectar primarily on first day; pollinated by medium-sized, short-tongued bees and flies that visit 1-2 flowers per plant.<sup>8</sup>

**Fruits/Seeds:** Narrow capsules (siliques), 4-7 cm (1½-2¾ in) long,<sup>14,16</sup> contain dark brown to black seeds;<sup>5,16</sup> up to 3,000 seeds per plant, animal and water dispersed<sup>5</sup> in late summer; cold and moist stratification required<sup>3,20,28</sup> but potential for scarification plus gibberellic acid to work instead of stratification;<sup>33</sup> germination best in dark, moist conditions at lower temperatures, 1-5 °C (34-41 °F); seed banks could last up to 10 years<sup>29</sup> and may be more likely in drier conditions.<sup>4</sup>

**Habitat:** Native to Europe; introduced to U.S. in 1868,<sup>22</sup> but molecular evidence suggests multiple introductions;<sup>10</sup> upland or floodplain forest, savannas, roadsides, trail edges, and disturbed areas;<sup>4,36</sup> shade-tolerant,<sup>5</sup> prefers shady, mesic areas with alkaline soils<sup>4,36</sup> but found in high light, xeric areas with acidic soils.<sup>1,4</sup>

## GARLIC MUSTARD

*Alliaria petiolata* (M. Bieb.) Cavara & Grande  
[*A. officinalis* Andrz.]

BRASSICACEAE

## *Alliaria petiolata* GARLIC MUSTARD

**Comments:** Nutritious for humans and possibly other animals;<sup>17</sup> may increase soil nutrient availability at invaded sites;<sup>32</sup> rare native butterfly oviposit host but larvae cannot feed;<sup>9,25</sup> wounding increases herbivory defenses,<sup>13</sup> but defensive chemical levels vary among populations from different sites;<sup>6</sup> allelopathy documented<sup>26</sup> (sinigrin, its most prominent glucosinolate, and cyanide<sup>7</sup>) on native plant mycorrhizae (both arbuscular mycorrhizae and ectomycorrhizal fungi);<sup>2,16,31,35,37</sup> phytotoxins decline as populations age<sup>18,19</sup> and are higher in high-density populations than low-density mixed-species populations;<sup>11</sup> susceptible to powdery mildew, but less in drier environments due to increased phytotoxin activity response to water limitation;<sup>11,12</sup> often associated with nonnative earthworms<sup>23</sup> that preferentially consume its seed over native seed;<sup>27</sup> at least two weevils assessed as biocontrol agents;<sup>15</sup> early-seedlings (cotyledon stage) do not compete well with second-year rosettes;<sup>3,21</sup> managing second-year plants may be most efficient.<sup>24</sup>

**Similar Native Species:** Meadow parsnip, golden alexander, ragwort, violet species (*Thaspium*, *Zizia*, *Senecio*, *Viola* spp.) have similar basal leaves; several mustards (*Brassica* spp.) have similar fruiting structures.<sup>16</sup>





**Habit:** Herbaceous, clonal perennial  $\leq 2$  m (6½ ft) tall; deep, creeping root system<sup>14,16,27</sup> that grows horizontal initially then downward<sup>7</sup> reaching 7 m (22 ft)<sup>35</sup> but most roots  $\leq 30$  cm (1 ft); root grows 5-10 cm (2-4 in) before shoot emerges;<sup>11</sup> runners between plants  $\leq 12$  m (39 ft).<sup>7</sup>

**Reproduction:** By seed,<sup>14,16</sup> root suckers,<sup>14,16,22,27</sup> root fragments<sup>22</sup>  $> 5$  mm (~¼ in),<sup>19</sup> and stem segments (less likely);<sup>11</sup> imperfectly dioecious (11-15% hermaphrodites in native range); selfed hermaphrodite seed set low compared to outcrossed individuals;<sup>22</sup> despite female-bias in progeny, males maintain an abundant presence, suggesting a greater capacity for males to clone.<sup>26</sup>

**Leaves:** Alternate; oblong to lanceolate; both surfaces glabrous to short-woolly (more so beneath); spiny margin; most cauline leaves sessile, slightly decurrent at stem,<sup>14,15</sup> variably shaped (wavy-pinnatifid lobed or just toothed).<sup>15</sup>

**Stems:** Glabrous,<sup>15</sup> grooved,<sup>37</sup> and very leafy.<sup>14,15</sup>

**Flowers:** Open, branched in ovoid-cylindric discoid heads;<sup>14,15</sup> involucre with weakly spine-tipped bracts  $\leq 2$  cm (¾ in) long;<sup>32</sup> pinkish-purplish, sometimes white; plumose pappus<sup>15</sup> surpass corollas in female flowers, but are shorter than corollas in males;<sup>16</sup> fragrance emission highest when pollinator activity highest and lowest when florivore activity highest;<sup>34</sup> female flowers insect pollinated optimally within 50 m (164 ft) of male plants; receptive for ~3 days but longer when pollen levels are low;<sup>26</sup> needs 14-16 hours of light to flower; may flower in one growing season; June-Oct.<sup>11,14</sup>

**Fruits/Seeds:** Achene 2.5-4 mm (~⅛ in), on larger side when pollen is limiting;<sup>26</sup> produces up to 50 seeds per head,<sup>22</sup> 5300 seeds per plant;<sup>11</sup> abortion rate

## CANADA THISTLE

*Cirsium arvense* (L.) Scop.

[*Carduus arvensis* (L.) Robson;

*Cirsium setosum* (Willd.) Bess. ex Bieb.]

ASTERACEAE

*Cirsium arvense*  
**CANADA THISTLE**

high;<sup>26</sup> Aug.-Oct.;<sup>11</sup> ants move seeds and may facilitate recruitment;<sup>1</sup> long-distance wind dispersal possible but rare because pappus separates from achene early;<sup>30</sup> cold stratification required;<sup>3</sup> germination better at depth  $\leq 1$  cm and soil moisture 75-100% of field capacity,<sup>25</sup> and best in high light for younger seeds; most germinate first year (seed bank unlikely),<sup>11,38</sup> but some persist 20 years if buried deep enough, 105 cm (~3½ ft);<sup>20,36</sup> stored seed germination rate is 90% at 2 years and 0% at 5 years.<sup>8</sup>

**Habitat:** Native to Europe, Western Asia, Northern Africa<sup>2</sup>—where also invasive;<sup>35</sup> likely introduced to U.S. from Western Europe in 1600s in contaminated hay or seed and again from Eastern Europe in late 1800s in contaminated cereals;<sup>18</sup> distribution primarily above 37° N latitude in U.S.; growth limited by temperatures  $>30$  °C (86 °F); open areas, roadsides, streambanks, clear-cuts, forest openings, and wet grasslands;<sup>30</sup> seedlings need  $\geq 20\%$  full sunlight to survive.<sup>11</sup>

**Comments:** Small patches have high extinction rates;<sup>12</sup> population expansion more likely via new clone establishment than growth of existing clones;<sup>21</sup> genetic diversity high for a clonal species,<sup>33</sup> possibly due to multiple introductions<sup>18</sup> with gene flow between populations;<sup>6</sup> not competitive against perennial nonnative grasses;<sup>2,13</sup> allelopathic properties demonstrated;<sup>4,11</sup> some allelopathic compounds are volatile and deter insects, such as aphids;<sup>17</sup> native and nonnative insect seed predation and herbivory high but minimal impacts;<sup>10,11</sup> many native congeners make biological control unlikely;<sup>31</sup> exotic weevil release may impact native thistles;<sup>28</sup> rust fungus *Puccinia punctiformis* may be specific to *C. arvense*<sup>23</sup> since it occurs in every U.S. county the plant is found, but its complex lifecycle may limit its establishment on *C. arvense*;<sup>5</sup> invasive range void of natural enemies may not boost performance;<sup>9</sup> higher CO<sub>2</sub> concentrations correlated with increases in growth and leaf defenses (leaf spine number and length);<sup>39</sup> controls include repeated stubble tillage followed by crop cultivation as well as repeated mowing or cutting (but less effective);<sup>24,29</sup> best to treat just before flowering when root carbon reserves are low.<sup>35</sup>

**Similar Native Species:** Swamp thistle (*C. muticum*) but biennial with larger flowering heads; Carolina thistle (*C. carolinianum*) but biennial with fewer, narrower cauline leaves, fewer flowers.<sup>16</sup>



**Habit:** Perennial, herbaceous shrub;  $\geq 3$  m (9 ft) tall;<sup>10,11,26,28</sup> shoots survive one season, rhizomes survive decades; in native habitat forms circular clonal stands that senesce from center.<sup>1</sup>

**Reproduction:** Mainly vegetative from fragments of rhizome or shoot;<sup>4,7,10,25</sup> by seeds,<sup>9,10,11,26</sup> dioecious<sup>9,11</sup> or gynodioecious.<sup>4,10</sup>

**Leaves:** Simple, alternate; broadly ovate with abruptly pointed tip, truncate base;<sup>9,11</sup> 8-15 cm (3½-6 in) long, 5-12 cm (2-4¾ in) wide; tubular, membranous ocrea.<sup>4,9</sup>

**Stems:** Round, sometimes ridged;<sup>11</sup> glaucous, often mottled;<sup>9</sup> hollow internodes,<sup>10</sup> swollen nodes.<sup>9,26</sup>

**Flowers:** Mid- to late summer; small, 2-3 mm (½ in);<sup>4</sup> 1,000s/plant;<sup>10</sup> greenish-white,<sup>9,11,26</sup> narrow racemes or panicles at middle/upper nodes;<sup>9,11,26</sup> fly and bee pollinated; copious nectar<sup>4</sup> that bees transform into a dark, quality honey.<sup>3,23</sup>

**Fruits/Seeds:** Fruits 3-winged, 8-9 mm (¼-½ in); seeds 3-4 mm (½ in), dark, glossy;<sup>9,11,26</sup> germination rate 61-95% in light at room temperature; no apparent cold stratification required;<sup>10</sup> dispersed by wind<sup>16</sup> and possibly water (rhizome and shoot fragments); House Sparrows, possibly other birds, eat the seeds.<sup>4</sup>

**Habitat:** Native to Asia; introduced to U.S. mid- to late 1800s;<sup>10</sup> disturbed and riparian areas, roadsides, woodlands; shade-intolerant;<sup>4</sup> native substrate volcanic<sup>17</sup> with low pH, but grows in a variety of soil types and pH levels; prefers wet habitats;<sup>4</sup> seedling survival depends

## JAPANESE KNOTWEED

*Fallopia japonica* (Houtt.) Ronse Decr.  
[*Polygonum cuspidatum* Sieb. & Zucc.;  
*Reynoutria japonica* Houtt.]

POLYGONACEAE

## *Fallopia japonica* JAPANESE KNOTWEED

on water, adults tolerate drier conditions;<sup>16</sup> some populations show salt tolerance;<sup>27</sup> USDA hardiness zones 4-8.<sup>8</sup>

**Comments:** Tetraploid, hexaploid, or octoploid;<sup>15</sup> polyploidy may increase genetic diversity;<sup>13</sup> native soil biota may facilitate knotweed invasion;<sup>21</sup> increases K, Mg, P, Cu, Mn, and Zn, which may enhance nutrient cycling rates and soil fertility,<sup>6</sup> but N mineralization rates not enhanced;<sup>2</sup> potential allelopathy;<sup>22</sup> cross with *F. sachalinensis* (also a nonnative invasive) results in viable, fertile hybrid *F. × bohemica*<sup>4,14</sup> that shows chemical weapons diversification<sup>22</sup> and hybrid vigor;<sup>20</sup> *F. japonica* used as substitute for natural estrogen, treatment for skin disorders, hepatitis, and inflammation;<sup>18</sup> use as biofuel being considered;<sup>29</sup> grazed by sheep, cattle, horses;<sup>4</sup> exhibits significant guttation;<sup>19</sup> *F. japonica* var. *compactum* also escapes;<sup>4</sup> *Aphalara itadori* (knotweed psyllid) released as biocontrol in Canada,<sup>5,30</sup> trial basis in U.S.

**Similar Native Species:** Virginia knotweed (*Persicaria virginiana*) but smaller, not shrubby, ocreae with marginal bristles, inflorescence slender spike.<sup>11,26</sup>





**Habit:** Perennial or biennial (less common) herb with a deep, 40-65 cm (16-26 in), branching tap root.<sup>18</sup>

**Reproduction:** Seeds; immature umbels may produce some viable seed;<sup>16</sup> monocarpic<sup>6,18</sup> though some perennials may survive after flowering<sup>18</sup> and even with immature umbels<sup>16</sup> cut stems may re-sprout.<sup>18</sup>

**Leaves:** Alternate;<sup>6,17,18</sup> pinnately-lobed with 2 side segments and a third terminal segment;<sup>6</sup> large, up to 3 m (9-10 ft) long; gradual decrease in size approaching top of plant;<sup>17</sup> pubescent underside;<sup>17</sup> petiole hollow<sup>12</sup> with enlarged sheath.<sup>6</sup>

**Stems:** Often purple-mottled; 2-5 m (6-16 ft) tall, up to 10 cm (4 in) diameter; hollow and ridged;<sup>6,17,18</sup> covered with stiff, brittle whitish hairs (also on petioles and peduncles).<sup>12</sup>

**Flowers:** Compound umbels each with 50-150 white rays;<sup>6,18</sup> up to 1.5 m (4-5 ft) diameter; most plants flower in third or fourth year;<sup>4,18</sup> flowers earlier in invaded range than native range, but flowers later (fifth year) in managed sites (pastures) than unmanaged sites for both invaded and native ranges;<sup>13</sup> June-Aug.;<sup>17,18</sup> stem damage may produce weak flowers;<sup>18</sup> self-compatible, outcrossing, protandrous hermaphrodite; pollinated by a variety of insects, mostly bees and flies; self-pollination may occur between different umbels of same plant.<sup>7,18</sup>

**Fruits/Seeds:** Fruit elliptic, ridged, winged, 8-15 mm (3/8 - 3/4 in) long schizocarp on an elongate stalk; splits

## GIANT HOGWEED

*Heracleum mantegazzianum* Sommier & Levier  
APIACEAE

HERB

*Heracleum mantegazzianum*

## GIANT HOGWEED

into 2 single-seeded halves; shed Aug.-Oct.;<sup>6,17,18</sup> possible >100,000 seeds per plant;<sup>18</sup> water, wind, or human dispersed, mostly within 10 m (33 ft) of mother plant;<sup>4,14,18</sup> germination appears to require moisture and cold stratification<sup>15,18</sup> and occurs in light or dark; may remain dormant in soil 5-6 years before germinating;<sup>1</sup> viability 2-15 years.<sup>18</sup>

**Habitat:** Native to Caucasus region, Southwest Asia;<sup>18</sup> introduced in U.S. as an ornamental;<sup>4</sup> open abandoned areas, roadsides, disturbed woodlands, and streambanks;<sup>4,17</sup> may invade a range of habitats,<sup>5,20</sup> but possible preference for open, mesic, and seasonally cold environments;<sup>15,18</sup> can survive temperatures as low as -17 °C (-31 °F).<sup>12</sup>

**Comments:** May increase soil pH and phosphorus;<sup>11</sup> sap has secondary compounds (furanocoumarins) that may cause severe burns, blistering, and rashes on humans with sun exposure;<sup>5,18</sup> some toxic compounds (e.g., isobutyl isobutyrate, isoamyl butyrate, and xanthotoxin) also present;<sup>8,19</sup> some of these substances inhibit insect herbivory by generalists but not by specialists,<sup>3</sup> while others have antibacterial properties;<sup>19</sup> leaves and seeds may contain allelopathic compounds;<sup>2</sup> root exudates may contain non-furanocoumarin allelopathic compounds with phytotoxic effects that may differ by maternal line<sup>9,10</sup> and are not novel but similar to those of a native congener and other species;<sup>9</sup> cattle, sheep, goat, pig, mollusc, and snail grazing is common; fungal pathogens noted;<sup>18</sup> the putative hybrid between *H. mantegazzianum* and *H. sphondylium* (native to U.K.) with low fertility is rare in the U.K.<sup>7,14</sup>

**Similar Native Species:** Cow parsnip (*H. lanatum*) but stem reaches only 3 m (10 ft)<sup>6</sup> and umbels usually have 15-30 rays.





**Habit:** Perennial, rhizomatous, warm-season grass reaching 1.5 m (5 ft) in height.<sup>27,30</sup>

**Reproduction:** By seed, outcrosses via wind pollination;<sup>37</sup> vegetatively by rhizomes;<sup>27</sup> older rhizomes may be primary form of reproduction;<sup>3,13</sup> rhizome fragments weighing as little as 0.1 g (<0.004 oz) can produce a new plant.<sup>3</sup>

**Leaves:** About 5 mm (1/4 in) wide with serrated margins; midvein offset from center;<sup>13,27,35</sup> sheath and ligule may be pubescent;<sup>20</sup> aside from flower stalks, most plant height is leaf material;<sup>27</sup> 'Red Baron' variety has bright red leaves.<sup>35</sup>

**Stems:** Culm nodes have silky hairs; most stem tissue is underground as rhizomes in top 15-40 cm (6-16 in) of soil but as deep as 1.2 m (4 ft);<sup>20</sup> rhizomes from a single plant up to 12 m (39 ft) long;<sup>37</sup> rhizomes are covered with brownish scale leaves;<sup>27</sup> a band of sclerenchymatous fibers just below epidermis protects stem tissue from desiccation and damage; culms may develop 3-4 weeks after seedling first forms, rhizomes may develop from seedling 4-12 weeks after germination.<sup>27,37</sup>

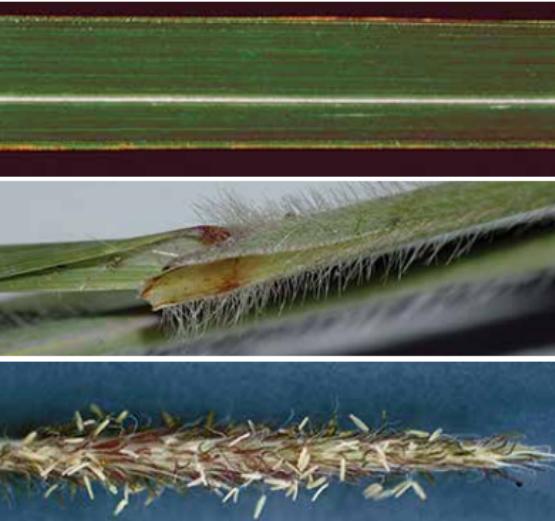
**Flowers:** Cylindrical, spike-like panicle, ~10-60 cm (4-24 in) long, 0.5-2.5 cm (1/4-1 in) wide; spikelets, surrounded by silky hairs, have 2 florets—upper is fertile with 2 orange-brown stamens, 2 purplish-brown stigma lobes<sup>27</sup> and lower is infertile; disturbances and added N stimulate flowering;<sup>27</sup> 'Red Baron' variety may<sup>5</sup> or may not flower;<sup>34,35</sup> late winter to early spring in U.S., later in the Mediterranean region, and possibly year-round in more tropical environments.<sup>20</sup>

**Fruits/Seeds:** Seeds small, ≤1.3 mm (0.05 in);<sup>23</sup> may produce >3000 seed per plant;<sup>27</sup> plumed seed wind dispersed as far as 24 km (15 mi), especially as clumps over open areas,<sup>27</sup> but most seed travels ≤15 m (49 ft);<sup>20,27</sup> higher light increases germination rates;<sup>27</sup> seed bank unlikely, possibly due to lack of dormancy and rapid decline in seed viability.<sup>10,27</sup>

## COONGRASS

*Imperata cylindrica* (L.) Raeusch.

[*I. arundinacea* Cirillo; *Lagurus cylindricus* L.]


POACEAE

## *Imperata cylindrica* COGONGRASS

**Habitat:** Native to Southeast Asia where it is a nuisance yet important for fire-maintained grasslands and savannas;<sup>27,32</sup> accidentally introduced to AL, in 1912 as packing material; intentionally introduced to MS, in 1921 as forage; cosmopolitan in tropical and subtropical regions; on every continent except Antarctica;<sup>27</sup> adapted best to disturbed areas in full or partial sun<sup>27</sup> but disturbance not required;<sup>23</sup> some populations salt tolerant;<sup>16</sup> USDA hardiness zones 4-13.<sup>38</sup>

**Comments:** C<sub>4</sub> photosynthesis; genets grow slower than ramets but are more likely to invade disturbed areas, while ramets are more competitive in areas with established populations;<sup>37</sup> light increases rhizome sprouting; shading reduces rhizome growth<sup>34</sup> and suppresses growth<sup>19,36</sup> but plants persist in forest understories;<sup>22</sup> may form mycorrhizal associations, giving it an advantage in infertile soils;<sup>27</sup> outcompetes other plants for P, especially legumes;<sup>4,33</sup> competes better for N than native species;<sup>11</sup> leaves accumulate silicates; has allelopathic compounds that may inhibit plant growth<sup>15,21,24,27,29</sup> or be used as an herbicide;<sup>2,8,39</sup> its sharp rhizomes may penetrate and damage belowground organs of other plants;<sup>19</sup> harbors an endophytic fungus that produces cytotoxic substances;<sup>12</sup> potential bioremediation use as a heavy metal hyperaccumulator (e.g., iron<sup>1</sup> and lead<sup>31</sup>); leaf powder may absorb heavy metals (copper,<sup>18</sup> lead,<sup>17</sup> and nickel<sup>25</sup>); pollen used to induce wheat haploids;<sup>9</sup> leaf extracts treat hypertension;<sup>28</sup> rhizome extracts have neuroprotective properties;<sup>40</sup> lacks genetic diversity<sup>7</sup> in native and invaded ranges;<sup>6</sup> not genetically distinct from less aggressive *I. brasiliensis* (1 stamen, not 2) that invaded pine rockland habitats of FL; further genetic comparisons with *I. brasiliensis* in native Brazil and Argentina needed.<sup>26</sup>

**Similar Native Species:** Arctic reedgrass (*Calamagrostis coarctata*) but florets awned, seeds not plumed.<sup>14</sup>





**Habit:** Shrubby, deciduous, perennial, herbaceous legume; somewhat woody base; 1.5 m (5 ft) tall.<sup>12</sup>

**Reproduction:** By seed through mixed-mating system with chasmogamous (CH) flowers primarily insect-pollinated and cleistogamous (CL) flowers selfed;<sup>1</sup> clonal by vegetative buds on stem base and by rhizomes.<sup>6,30</sup>

**Leaves:** Numerous; trifoliate; petioles 1.5-5 mm (~1/16-1/4 in) long;<sup>12</sup> leaflets wedge-shaped or linear-cuneate, 10-27 mm (3/8-1 in) long and both truncate and mucronate; underside with silky, gray pubescence.<sup>12,25</sup>

**Stems:** Wand-like, slender, erect branches with longitudinal grooves; hairy on angles (or ridges) between grooves.<sup>12</sup>

**Flowers:** July-Oct.; CH small 7-9 mm (1/4-3/8 in), whitish with purple or pink veins; CL inconspicuous, about half size of CH; 1-3 axillary for both CH and CL;<sup>6,25</sup> CH typically open in morning and senesce after one day;<sup>28</sup> *L. cuneata* CH attract more pollinators than associated native *Lespedeza* spp. CH in the same area;<sup>31</sup> delayed self-pollination of CH more likely when pollinators are limited.<sup>30</sup>

**Fruits/Seeds:** Fruit is oval loment, 2-3 mm (1/16-1/8 in) long;<sup>12,25</sup> CH seeds and seedlings larger than CL seeds and seedlings;<sup>7</sup> most CH seed outcrossed but not all; progeny derived from CH seed produce 40% more seed than progeny from CL seed;<sup>9</sup> seeds may germinate throughout growing season;<sup>29</sup> scarification required for germination;<sup>6</sup> fire stimulates germination;<sup>6,29</sup> seed leachate may prevent germination under high seed densities;<sup>17</sup> seeds potentially viable >50 years;<sup>6</sup> seed bank ≥30 years.<sup>5,28</sup>

**Habitat:** Native to East Asia; first introduced to the U.S. in NC, from Japan in 1896<sup>9,24</sup> with a second introduction in 1924 to VA;<sup>11</sup> planted over large regions in U.S. in the 1930s and 1940s for erosion control;<sup>9,10</sup> also included in

## CHINESE LESPEDEZA

*Lespedeza cuneata* (Dum. Cours.) G. Don.

FABACEAE

## *Lespedeza cuneata* CHINESE LESPEDEZA

a reclamation seed mix for coal mine spoils;<sup>5,28</sup> old fields, prairies, oak savannas, woodlands, forest openings, and disturbed open areas.<sup>11</sup>

**Comments:** Populations today likely a mixture of 3 cultivars;<sup>2,14</sup> tissue high in condensed tannins deters foraging by cattle (and possibly other ruminants) by reducing protein digestion; polyethylene glycol (PEG) supplements in cattle's diet bind with tannins to improve digestion and increase consumption;<sup>23</sup> late season grazing by sheep (not affected by tannins) possible;<sup>22</sup> increased herbivory reduces number of seeds produced resulting in fewer CH than CL seeds,<sup>26</sup> however, tends to experience less herbivory and produce more CH seed than native *Lespedeza* spp.;<sup>27,28</sup> appears more competitive under low soil fertility conditions as a N-fixer;<sup>3,16</sup> also facilitates its invasion by increasing abundance of available rhizobia in the invaded area;<sup>8</sup> associations with several rhizobial genera formed in native range,<sup>13</sup> but limited to fewer genera in introduced range; forms less diverse rhizobial associations than native *Lespedeza* spp.;<sup>4</sup> despite lower diversity of rhizobia, has higher shoot and root biomass than competing native species;<sup>18</sup> may put more energy into root biomass in low-N soils;<sup>15</sup> few nematodes attack in invaded range due to high tannin content; nematodes associated with increases in nodules;<sup>19</sup> lower rhizobial diversity related to lack of nematodes;<sup>4</sup> hybridization with native *Lespedeza* spp. unlikely due to differences in chromosome numbers (*L. cuneata* n=19 and native *Lespedeza* spp. n=10);<sup>6</sup> some evidence of allelopathy;<sup>20,21</sup> evolved since 1930s to become more aggressive but with fewer defenses—switched from constitutive to inducible defense strategy.<sup>2</sup>

**Similar Native Species:** Virginia lespedeza (*L. virginica*) but leaflets strigose above and below,<sup>12</sup> flowers purple or violet.





**Habit:** Reclining, loosely branching annual; grows to 1 m (3 ft).<sup>10,13,18,25</sup>

**Reproduction:** Seeds;<sup>10,13,25</sup> may root at lower nodes.<sup>15</sup>

**Leaves:** Lanceolate, tapering at both ends; 5-10 mm (~1/4-3/8 in) wide, 3-8 cm (~1-3 in) long; pale green; midvein offset from center; a silvery line runs over the mid-vein on upper surface; sheath collar ciliate.<sup>13,23,25</sup>

**Stems:** Reclining and branching growth to upright; nodes glabrous and swollen.<sup>8,10,23</sup>

**Flowers:** Late summer/early fall; terminal spike-like, branching inflorescence; up to 7 cm (2 3/4 in) long with paired, hairy spikelets; one form has one of the two lemmas awned, another form both lemmas are awnless;<sup>9</sup> has both cleistogamous (CL) and chasmogamous (CH) flowers;<sup>27</sup> all flowering during drought is more likely under high light conditions;<sup>12</sup> more CH flowers on plants grown in high light;<sup>1,5</sup> shade populations potentially highly selfed.<sup>12</sup>

**Fruits/Seeds:** Ellipsoid grain 2.8-3.0 mm (1/8 in) long; may produce abundant seed infrequently;<sup>12</sup> seeds mature and are dispersed in late fall<sup>25</sup> when they appear to be dormant; water and animal dispersed;<sup>23</sup> cold stratification improves germination but is not required;<sup>12,17</sup> CH seed more viable than CL seed;<sup>17</sup> seed bank ≥3 years.<sup>1,12</sup>

**Habitat:** Native to tropical Asia;<sup>13,25,26</sup> introduced to the U.S. in 1919;<sup>9</sup> shade-tolerant;<sup>19</sup> prefers shade (closed canopy forests, especially riparian areas) but found in

## JAPANESE STILTGRASS

*Microstegium vimineum* (Trin.) A. Camus

[*Andropogon vimineus* (Trin.)

*Eulalia viminea* (Trin.) Kuntze]

POACEAE

HERB

## *Microstegium vimineum* JAPANESE STILTGRASS

high light areas (roadsides, ditches, forest borders, and fields);<sup>24</sup> plants are larger in open areas;<sup>5</sup> may prefer bare or disturbed ground lacking competition with other plants.<sup>1,18,24,29</sup>

**Comments:** C<sub>4</sub> photosynthesis;<sup>2,3,19</sup> efficient use of sunflecks;<sup>14</sup> lower capacity to photosynthesize in high light;<sup>28</sup> its litter forms thick thatch that may prevent establishment of natives and itself;<sup>12</sup> may alter soil conditions by increasing pH, nitrification, and nitrates;<sup>1,8</sup> association with nonnative earthworms possibly due to increased litter decomposition or an agricultural connection;<sup>20,21</sup> arbuscular mycorrhizal fungi associations that enhance P uptake and *M. vimineum* growth;<sup>22</sup> initial establishment correlated with high native species diversity;<sup>16</sup> older populations less likely to persist and compete with natives;<sup>7,11</sup> genetically distinct populations are indicative of selection and adaptation to new environments;<sup>6,30</sup> two *Bipolaris* spp. of fungus infect and can kill this species; efficacy varies by species of *Bipolaris* and stiltgrass population making biocontrol use unlikely.<sup>4,19</sup>

**Similar Native Species:** White cut grass/Virginia cut grass (*Leersia virginica*) but perennial, hairy nodes, and earlier flowers (early/mid-summer).<sup>23</sup>





**Habit:** Tufted, perennial, warm-season, ornamental grass<sup>2,14,40</sup> with 0.9-1.2 m (3-4 ft) spread; like other tussock grasses, “fairy-ring” patches (center shoots of clump die back due to intraspecific competition) are common.<sup>39</sup>

**Reproduction:** By seed,<sup>7</sup> self-incompatible,<sup>8,20,36,39</sup> vegetatively via rhizomes possible.<sup>28</sup>

**Leaves:** Up to 2 m (6½ ft) long and about 1 cm (~¼-½ in) wide; scabrous margins.<sup>14</sup>

**Stems:** Aboveground stems solid;<sup>3</sup> rhizomes up to 4.7 cm (~2 in)<sup>28</sup> and as deep as 10 cm (4 in),<sup>45</sup> and may survive 4-5 years as separated propagules.<sup>22</sup>

**Flowers:** Flowering date varies with latitude (higher latitudes up to 2 months earlier than lower latitudes); June-Oct.,<sup>39</sup> simple raceme forms a fan-shaped panicle, 20-25 cm (8-10 in) long;<sup>40</sup> paired spikelets, one short- and the other long-pedicelled; glumes 3-4 mm (1/8-3/16 in) long with a ring of long silky hairs radiating beneath; upper fertile lemma has an awn 6 mm (1/4 in) long, lower lemma is sterile without an awn.<sup>14</sup>

**Fruits/Seeds:** July-Nov.,<sup>39</sup> each plant produces estimated 1051 seeds<sup>19</sup> that disperse up to 400 m (1/4 mi);<sup>31,32</sup> seed bank in native range may last 50 years;<sup>39,43</sup> related *M. sacchariflorus* does not appear to produce a seed bank in its invasive range;<sup>17</sup> germination occurs without pretreatment<sup>18</sup> but percentages may increase with day/night temperatures of 30/20 °C (86/68 °F) or day temperatures of 32-36 °C (90-97 °F).<sup>1,28</sup>

**Habitat:** Native to Japan, Korea, China, Taiwan, and Russia;<sup>39</sup> introduced to U.S. from Japan in late 1800s,<sup>2,13</sup> escapes from cultivation first noted in 1913;<sup>5</sup> pioneer species in native range, dominates heavily disturbed volcanic sites<sup>42</sup> and clear-cut tracts<sup>30</sup>—more so if succession stalled by management (e.g., frequent fire);

## EULALIA

*Miscanthus sinensis* Andersson

POACEAE

## *Miscanthus sinensis*

### EULALIA

can grow in wide variety of environments;<sup>34</sup> tolerates non-fertile soils, cold temperatures, heavy metals, and low soil pH;<sup>39</sup> USDA hardiness zones 5-9.<sup>40</sup>

**Comments:** Continues to be a popular landscape grass;<sup>31,44</sup> at least 24 cultivars;<sup>40</sup> variegated variety *M. sinensis* var. *zebrinus* may also escape;<sup>2,35</sup> most roots in top 60 cm (2 ft) of soil but may extend down to 120 cm (4 ft);<sup>45</sup> C<sub>4</sub> photosynthesis;<sup>38</sup> potential use as bioenergy crop; vegetation decomposes slowly;<sup>27</sup> grows larger in higher light environments, though survives in shade<sup>21,25</sup> where plant size and vigor may not be decreased;<sup>11</sup> invaded range shade tolerance not greater than native Japan;<sup>25</sup> grazed by livestock in native range;<sup>39,41</sup> documented associations of arbuscular mycorrhizae in native populations;<sup>37</sup> genotype response varies with different environments;<sup>9</sup> U.S. populations have high genetic diversity similar to populations in Japan;<sup>33</sup> genome is large—two subgenomes originated from a tetraploid;<sup>23</sup> in native range diploid *M. sinensis* naturally hybridizes with tetraploid *M. sacchariflorus* to form sterile triploid *M. x giganteus*;<sup>16,29</sup> both *M. sacchariflorus* and the hybrid likely spread via rhizome propagules;<sup>24</sup> *M. sinensis* is easier to propagate while *M. x giganteus* is less likely to become invasive<sup>15,31,32</sup> unless fertile varieties are developed; a fertile cultivar of *M. x giganteus* is in development as alternative to costly vegetative plantings used for biofuel crops, increasing its invasive potential;<sup>26</sup> genome doubling overcomes triploid sterility of *M. x giganteus*;<sup>6</sup> *M. sacchariflorus*<sup>14</sup> and *M. x giganteus* less cold<sup>12</sup> and drought<sup>10</sup> tolerant than *M. sinensis*, and their lemmas are awnless; *M. sacchariflorus* reaches heights of 2.5 m (8½ ft) with hollow or solid stems<sup>3</sup> and *M. x giganteus* reaches heights of 3.5 m (11½ ft) with hollow stems;<sup>3</sup> two aphids known to cause severe damage to some grass crops were found on *M. x giganteus* indicating potential to be a host.<sup>4</sup>

**Similar Native Species:** Silver plume grass (*Saccharum alopecuroides*) but leaves densely pilose at base, margins not scabrous, can be longer/wider; panicles narrower.<sup>14</sup>





**Habit:** Erect (diploid type) to reclining (tetraploid type), perennial herb and geophyte;<sup>17,21</sup> 30 cm (12 in) or less in height;<sup>7,8,17,21</sup> spring ephemeral.<sup>3,9</sup>

**Reproduction:** By seed and vegetatively by tuberous, adventitious roots; clonal; usually hermaphroditic,<sup>21</sup> though female flowers documented and more rarely male flowers; ssp. *bulbifera* (tetraploid) can produce bulbils, but may produce less seed; ssp. *ficaria* (diploid) and other subspecies do not produce bulbils but produce tubers and seed; preferentially outcrosses, but self-pollination possible with lower seed viability.<sup>13,19</sup>

**Leaves:** Long-petioled with sheathing bases;<sup>21</sup> blade 5-50 mm (1/4-2 in) long and wide, fleshy, glabrous, shiny, dark green,<sup>7,21</sup> sometimes with whitish mottling or black blotches;<sup>21</sup> cordate to oblong cordate, shape variable; entire, toothed, or wavy margin;<sup>7,8,17</sup> rosette of 2-4 basal leaves; 1-2 pairs of opposite, cauline leaves may have some lobing.<sup>21</sup>

**Stems:** Glabrous and fleshy;<sup>7,21</sup> short internodes;<sup>8</sup> aerial bulbils may be at each node, usually in tetraploids; may branch;<sup>21</sup> first developmental stem is a spear shoot (one apparent cotyledon; second is enclosed in the first).<sup>18</sup>

**Flowers:** Terminal and solitary on each stem, 2-3 cm (~1 in) diameter; 3-4 green sepals fall off early; 8-12 bright, shiny (on inside) yellow petals fade to white; 5-72 stamens and carpels;<sup>21</sup> produces nectar; pollinated by short-tongued insects (bees, small beetles, and flies); flowering more likely on plants under high light with large tubers;<sup>21</sup> Mar.-May.<sup>3,21</sup>

**Fruits/Seeds:** Fruit is beakless, glabrous, or pubescent achene, 2.5-4 mm (1-1½ in) long;<sup>2,7,8,17</sup> 10-15 achenes per flower;<sup>2</sup> May to early June;<sup>21</sup> evidence seed dispersed by deer (in excrement) and ants in native environment;<sup>10,12</sup> about 60% of diploid seed is viable; about 2% of tetraploid seed is viable due to low pollen viability; germinates in both light and dark; requires warm then cold stratification; germination optimal at 5 or 11 °C (41

## LESSER CELANDINE

*Ranunculus ficaria* L.

[*Ficaria verna* Huds; *F. ranunculoides* Moench]

RANUNCULACEAE

## *Ranunculus ficaria*

### LESSER CELANDINE

or 52 °F) day and 4 or 9 °C (39 or 48 °F) night;<sup>1,21</sup> seed bank undocumented in the literature at this time.

**Habitat:** Introduced from Europe (Norway/Russia to the Mediterranean/Portugal)<sup>21</sup> to Eastern U.S. in mid-1700s;<sup>3</sup> shade-tolerant; flowers and fruits before forest leaf out;<sup>12</sup> tolerates dry conditions, but prefers wetter conditions in spring; often associated with seasonally wet sites; possible preference for alkaline soils; in native England most common in mixed deciduous forests; diploid is associated with undisturbed, deciduous woodlands and permanent pastures; tetraploid is associated with disturbed ground;<sup>21</sup> vegetative growth is less susceptible to dry conditions than flowering is.<sup>24</sup>

**Comments:** Plants with larger tubers develop faster; vesicular-arbuscular mycorrhizal association present;<sup>21</sup> at least 9 cultivars;<sup>7</sup> possibly 100 varieties and 5 subspecies;<sup>4</sup> the 5 subspecies have been confirmed in the U.S., with ssp. *calthifolius* (leaves crowded at base, few on short stems) having widest distribution;<sup>16</sup> ssp. *ficaria* and ssp. *bulbifera* are also thought to predominate;<sup>11,21</sup> fragmentation of root tubers results in extensive vegetative propagation;<sup>21</sup> native plants growing near *R. ficaria* have increased pollinator visitation rates, but not seed production;<sup>14</sup> possible allelopathic properties, but relatively weak;<sup>5,6</sup> used medicinally as an anti-inflammatory, astringent, and antibiotic,<sup>23</sup> but documented to cause acute hepatitis if ingested;<sup>20</sup> contains several flavonoid compounds;<sup>22</sup> documented reduction in its abundance in areas with increased soil acidification over 30 years.<sup>15</sup>

**Similar Native Species:** Marsh marigold (*Caltha palustris*) but leaves larger and lighter green, stems hollow, flowers petaloid (petal-like sepals only) and multiple per stem, follicle fruit.<sup>6</sup>





**Habit:** Perennial herb up to 40 cm (16 in) tall,<sup>18</sup> male plants shorter than female.<sup>32</sup>

**Reproduction:** By seed<sup>13,40</sup> and vegetatively by root sprouts producing clones;<sup>27</sup> dioecious;<sup>13,18,40</sup> most genet populations at a 1:1 sex ratio, ramet populations often female-biased;<sup>33,38</sup> seedlings unlikely to flower first year; overwintering ramets likely make up most of any cohort.<sup>54</sup>

**Leaves:** Hastate with 2 divergent basal lobes or linear-spatulate;<sup>13,18,40</sup> primarily a basal rosette with some alternate and petioled cauline leaves of same shape;<sup>40</sup> glaucous-green; thin; bitter, slightly acid taste.<sup>32</sup>

**Stems:** Erect or bending.<sup>40</sup>

**Flowers:** A panicle of small, reddish yellow-green flowers<sup>40,50</sup> on jointed pedicels;<sup>13</sup> May-Sept.,<sup>50</sup> male plants flower first;<sup>33</sup> tendency for more flowering males; wind pollinated.<sup>32</sup>

**Fruits/Seeds:** Triangular achene, June-Oct;<sup>13</sup> seeds may require scarification; warm stratification required; tend not to germinate first year;<sup>32</sup> optimum germination at 15 °C (59 °F) or a fluctuating 20/30 °C (68/86 °F), higher rates in light;<sup>2,4,51</sup> adding heat (~80-100 °C; 176-212 °F) and drying then wetting increases germination; adding fire<sup>19</sup> and N may promote germination;<sup>21</sup> potential seed bank of 5<sup>20,21,41</sup> to 26 years;<sup>17,34</sup> less viable seed production as plants age.<sup>9</sup>

**Habitat:** Native to Eurasia; preference for disturbed, open habitats<sup>36</sup> (plants relatively smaller than those in shade), but found in forest gaps<sup>10</sup> and closed canopy forests (plants relatively larger);<sup>12</sup> acidic soils high in exchangeable phosphate;<sup>48</sup> calcifuge; unable to

## SHEEP SORREL

*Rumex acetosella* L. [*Acetosella acetosella* (L.) Small; *A. tenuifolia* (Wallr.) Á. Löve]  
POLYGONACEAE

*Rumex acetosella*  
**SHEEP SORREL**

solubilize phosphate and iron;<sup>45,49</sup> avoids Al<sup>3+</sup> (aluminum ion) toxicity by exuding oxalic acid;<sup>42</sup> may survive in serpentine soils by excluding heavy metals;<sup>44,53</sup> distribution associated with N deposition;<sup>3</sup> typically non-mycorrhizal;<sup>14,36</sup> population may increase if soil symbiotic fungi decreases;<sup>37</sup> more competitive in areas with high light and nutrients;<sup>10</sup> sensitive to flooding,<sup>1</sup> but drought-tolerant;<sup>11</sup> males more drought-tolerant than females, depending on age.<sup>22,23,55</sup>

**Comments:** North American (NA) populations primarily hexaploids<sup>12</sup> (subspecies *angiocarpus*); diploids, tetraploids and octoploids also found; genetic variation high, but NA populations less diverse than European populations;<sup>30</sup> ovaries, stamens, seed, and pollen increase in size as ploidy level increases; hybridization between ploidy types occurs, but offspring usually sterile;<sup>32</sup> not palatable to livestock;<sup>6</sup> females initially smaller than males, but often equal or larger at end of growing season;<sup>28,38</sup> males have higher reproductive cost than females at certain stages,<sup>33</sup> but overall cost to females is higher;<sup>29</sup> females respond more rapidly and positively to rich environments;<sup>22</sup> males allocate more biomass to belowground organs;<sup>16</sup> associated with appreciable amounts of N-fixation, presumably by rhizosphere bacteria;<sup>43</sup> cytokinins may trigger femaleness;<sup>5,25</sup> resource translocation among ramets unlikely;<sup>27</sup> older populations ( $\geq 4$  years) allocate greater overall resources to vegetative propagation;<sup>7,8,9</sup> fossil pollen deposits used as a disturbance or human-settlement indicator;<sup>35,39,47</sup> documented 50% reduced yield of strawberry crops associated with this species;<sup>52</sup> often found growing in low-bush blueberry fields; eaten in salad;<sup>24</sup> traditionally used to treat gastrointestinal problems, inflammation, and fevers;<sup>46</sup> shows resistance to the herbicide hexazinone;<sup>26,31</sup> fairly widespread in sub-Antarctic islands.<sup>15</sup>

**Similar Native Species:** Wild sorrel (*R. hastatulus*) but achene has wing-like valves; arrowhead violet (*Viola sagittata*) but leaves all basal and flowers violet-purple.<sup>18</sup>





**Habit:** Semi-evergreen to evergreen; high-climbing, woody twining vine;<sup>5</sup> size depends on support structure, may grow 7-12 m (23-39 ft) tall,<sup>13</sup> ≥6-12 m (20-39 ft) horizontally; stoloniferous (allows colonization of large areas), can be groundcover.<sup>2</sup>

**Reproduction:** By seed, monoecious but self-incompatible—must be cross-pollinated to set fruit;<sup>5,6</sup> vegetatively by stolons.<sup>2</sup>

**Leaves:** Alternate;<sup>5,16</sup> palmately compound—5 oval leaflets, 3.5-8 cm (1½-3 in) long;<sup>1,2,16</sup> notched tips;<sup>1</sup> bluish-green above, glaucous beneath; leaf out as early as Mar.; new leaves may be purple-tinged.<sup>2</sup>

**Stems:** Green becomes brown; glabrous, heavily lenticelled; leaf scars much raised.<sup>2</sup>

**Flowers:** No petals, 3 fleshy sepals; fragrant (slightly vanilla, spicy);<sup>1,2,3,19</sup> appear with leaves between Mar.<sup>2</sup> and May;<sup>16</sup> drooping,<sup>19</sup> axillary racemes, ~13 cm (5 in) long;<sup>1</sup> lower raceme flowers female,<sup>5</sup> purplish-brown, ~2-3 cm (~1 in) wide<sup>2,5,16</sup> with 5-9 purple pistils; upper are male,<sup>5</sup> pale pink, sepals slightly reflexed,<sup>2,19</sup> 6 mm (~¼ in) wide with 6 deep purple stamens;<sup>6</sup> female to male ratio approximately 1:4 or 1:5; female flowers open 1-2 days before males but produce no nectar—pollinators unrewarded;<sup>6,7</sup> distinctive flower sizes for sexes increases pollinator efficiency where solitary bees, the primary pollinators, visit a plant's larger female flowers first followed by many more of its male flowers,<sup>6</sup> this sequence reduces pollen transfer between flowers of the same plant.<sup>8</sup>

**Fruits/Seeds:** Fleshy, sausage-shaped pod, about 5-10 cm (2-4 in) long, glaucous-gray to purple-violet; soft, juicy

## CHOCOLATE VINE

*Akebia quinata* (Houtt.) Decne.

LARDIZABALACEAE

VINE

## *Akebia quinata* CHOCOLATE VINE

texture with delicate, sweet flavor that tastes like a mixture of banana, lychee, and passion fruit;<sup>14</sup> splits lengthwise showing pulpy, white core with black seeds<sup>2,19</sup> (~200/pod) when fruit matures, Sep.-Oct.;<sup>8</sup> mammals and birds disperse seeds (found in feces) as well as ants;<sup>15</sup> refrigerating 14 days at 5 °C (41 °F) improves germination; seeds viable 2-3 years in cold storage;<sup>22</sup> seed bank longevity unknown.

**Habitat:** Native to Eastern Asia<sup>5</sup> (i.e., central China, Korea, and Japan); introduced to U.S. in 1845;<sup>2</sup> hardy, grows in sun or shade, moist or dry soils, and low or high pH;<sup>3</sup> responds negatively to root disturbance;<sup>19</sup> thrives in partial shade with well-drained, moist loamy soil in native range;<sup>13</sup> USDA hardiness zones 4-8.<sup>2,3</sup>

**Comments:** Three known cultivars, one has white flowers and fruit;<sup>2</sup> fruit production limited by proximity to another *A. quinata*;<sup>3</sup> high fruit crop potential in native region<sup>14</sup> but it is overharvested there;<sup>13</sup> extracts may have diuretic, analgesic,<sup>9</sup> antioxidant,<sup>11,17</sup> and neuroprotective<sup>21</sup> activities; used to treat urinary disorders, inflammation,<sup>10</sup> obesity, high blood lipid concentrations,<sup>20</sup> and skin aging;<sup>18</sup> powdery mildew symptoms exhibited;<sup>4</sup> chloroplast genome defined.<sup>12</sup>

**Similar Native Species:** Virginia creeper (*Parthenocissus quinquefolia*) but leaves toothed and pointed, flowers small yellowish-green, fruit purplish-black berries ≤6 mm (~1/4 in) wide.<sup>5,16</sup>





**Habit:** Deciduous; woody twining vine;<sup>7</sup> up to 18 m (59 ft) long.<sup>3,5,10</sup>

**Reproduction:** By seeds; vegetatively<sup>7</sup> by root suckers.<sup>4</sup>

**Leaves:** Alternate; entire with shallow teeth; 5-12.5 cm (2-5 in) long; shape varies but length usually less than twice width and rounded with abruptly pointed tip.<sup>3,7</sup>

**Stems:** Light brown;<sup>3</sup> up to 5-10 cm (2-4 in) diameter.<sup>3,5,10</sup>

**Flowers:** Few whitish-greenish flowers in short axillary inflorescences subtended by a longer leaf;<sup>7</sup> May-June;<sup>23</sup> dioecious with some perfect flowers,<sup>7</sup> occasionally monoecious;<sup>4,9</sup> insect or wind pollinated.<sup>1,29</sup>

**Fruits/Seeds:** Fruit adjacent to vegetative bud; matures late summer/early fall; yellowish outer skin covers red fleshy aril containing 3-6 seeds;<sup>4</sup> may remain on vines through winter, though most drop by early winter;<sup>8</sup> seeds dispersed by humans, birds (131 m, 430 ft),<sup>24</sup> or small mammals;<sup>4</sup> wildlife typically ingest in winter; germination rates of de-fleshed seed higher than ingestion-scarified seed;<sup>8</sup> no apparent seed bank.<sup>27</sup>

**Habitat:** Native to Japan, China, and Korea—where not considered a forest species;<sup>25</sup> introduced to U.S. as early as 1860;<sup>8</sup> open areas; early/late-successional forests;<sup>4,25</sup> possible mesic soil preference;<sup>12,17</sup> benefits from additional support at high densities;<sup>15</sup> USDA hardiness zones 4-7.<sup>3</sup>

**Comments:** Presence may improve soil fertility by increasing soil pH, K, Ca, and Mg levels, but P may remain limiting;<sup>16</sup> forms endomycorrhizal fungi associations that may help in P limited soils;<sup>14,18</sup> germinates best in shade, but prolific growth may require light;<sup>8,21</sup> very low root pressure but conducts

## ORIENTAL BITTERSWEET

*Celastrus orbiculatus* Thunb.

CELASTRACEAE

VINE

*Celastrus orbiculatus*

## ORIENTAL BITTERSWEET

water at rates equal to native vines with high root pressure; despite evident embolism, keeps leaves ~1 month after first frost; greater secondary growth rates than native grape species;<sup>26</sup> may facilitate grapevine growth;<sup>6</sup> may be weakly allopathic;<sup>2,13</sup> "sit and wait" invasion strategy;<sup>8</sup> may impede photosynthesis and damage structure of host species;<sup>4,19</sup> produces a sparingly fertile hybrid with native *C. scandens*<sup>28</sup> that is more vigorous than this native;<sup>22</sup> unidirectional hybridization—pollen flows from male invader to female native—result is poor seed set and offspring with infertile pollen, ensuring wasted native female reproductive effort;<sup>30</sup> evidence of medicinal properties that treat rheumatoid arthritis,<sup>20</sup> reverse cancer cell resistance to treatment drugs,<sup>11</sup> and inhibit growth of cancer cells.<sup>31</sup>

**Similar Native Species:** American bittersweet (*C. scandens*) but leaf length typically more than twice width, inflorescences terminal and not next to a vegetative bud.<sup>9,23</sup>





**Habit:** Perennial, semi-evergreen to evergreen<sup>3,5,9</sup> vine that trails or climbs to 7 m (23 ft).<sup>21</sup>

**Reproduction:** Vegetatively by stem cuttings;<sup>1</sup> by seed;<sup>3,11,13,31,43</sup> obligatory outcrosser, but may be pollinator limited.<sup>1,5,22,32</sup>

**Leaves:** Opposite, entire, oblong, 4-8 cm (1½-3⅛ in) long; base round/triangular; may have lobes or teeth; lower surface often lighter green than upper; surfaces may have a few hairs.<sup>5,9,21</sup>

**Stems:** Pubescent, reddish/light-brown when young;<sup>9,13,21</sup> becomes hollow, brownish, and glabrous with age;<sup>23</sup> climber internodes shorter than trailer internodes.<sup>38</sup>

**Flowers:** May-June;<sup>21,22,31</sup> may flower again Sept.-Oct. in Southern States;<sup>23</sup> paired at each node;<sup>21</sup> tubular, 2.5-3.8 cm (1-1½ in) long with 2 reflexed lips, stamens extend beyond lips; white, cream, or pink<sup>13,21</sup>—yellows with age;<sup>21,31</sup> fragrant,<sup>28</sup> pubescent inside<sup>11</sup> with glandular hairs bearing nectar;<sup>32</sup> open at dusk, maximizes visits from diurnal (bees) and nocturnal (moths) pollinators; nocturnal pollinators disperse pollen further;<sup>28</sup> may be best adapted for hawkmoths<sup>22,29</sup> that are attracted to rhythmic linalool emission (highest first midnight of 2-day flowering period<sup>29</sup>); diurnal bee pollinators remove more pollen but transfer it less efficiently (due to high pollen consumption) than hawkmoths.<sup>28</sup>

**Fruits/Seeds:** Sept.-Oct.;<sup>21,31</sup> black, glossy fruit 0.6 cm (¼ in) diameter<sup>13,21</sup> with 4-10 brown-black seeds;<sup>21</sup> dispersed by deer, rabbits, bobwhites, turkeys,<sup>10</sup> and other birds;<sup>21</sup> germinates best with cold, moist stratification; germination rates high, seed bank potential therefore low;<sup>12,16</sup> viability may be low;<sup>15</sup> after 3 years viability reduced to <1%.<sup>41</sup>

## JAPANESE HONEYSUCKLE

*Lonicera japonica* Thunb.

[*Nintooa japonica* (Thunb.) Sweet]

CAPRIFOLIACEAE

## *Lonicera japonica*

# JAPANESE HONEYSUCKLE

**Habitat:** Native to Eastern Asia;<sup>13</sup> introduced to the U.S. in 1806<sup>23,24,36</sup> for horticultural purposes and soil stabilization;<sup>21</sup> escaped cultivation between 1860 and the 1890s;<sup>23</sup> woods, fields, disturbed areas, roadsides, bottomlands, and fence rows;<sup>13,31,37</sup> tolerates shade but most growth in full sun; rarely flowers in low light;<sup>33</sup> not as shade tolerant as some associated native vines;<sup>4</sup> sensitive to dry conditions;<sup>2</sup> responds positively to increase in CO<sub>2</sub>;<sup>34</sup> USDA hardiness zones 4-9.<sup>9</sup>

**Comments:** Has 6-12 cultivars or horticultural varieties;<sup>9,23</sup> most common invasive variety in North America is *halliana* (green leaves, white flowers);<sup>23</sup> diploid but with a tetraploid cultivar;<sup>26</sup> tetraploids may exhibit increased leaf thickness and drought tolerance compared to diploids;<sup>26,27</sup> less genetic diversity<sup>35</sup> and greater annual carbon gain<sup>37</sup> than *L. sempervirens* (native vine); forage for deer<sup>40,44</sup> but *L. sempervirens* preferred; herbivory increases growth;<sup>36</sup> impacts on native host plant (reduced lower leaf N, photosynthesis, and growth) primarily due to root competition;<sup>6,7,8</sup> may have allelopathic effects on some tree species;<sup>42</sup> several medicinal properties<sup>39</sup> including anti-inflammatory<sup>25</sup> and anti-bacterial/viral;<sup>17</sup> potential use to treat diabetes<sup>14</sup> and myocardial infarction<sup>20</sup> and prevent food-borne diseases and food spoilage;<sup>30</sup> shows tolerance to cadmium—potential hyperaccumulator with possible uses in phytoremediation;<sup>18,19</sup> possible insecticidal applications.<sup>45</sup>

**Similar Native Species:** Trumpet honeysuckle (*L. sempervirens*) but leaves glaucous (both surfaces), terminal leaves connate, flowers terminal.<sup>13,31</sup>





**Habit:** Annual climbing vine with shallow, fibrous roots;<sup>6,29</sup> ascends 6-8 m (20-26 ft);<sup>19,29</sup> climbs on other plants;<sup>21</sup> may behave as a perennial (with a tap root) in subtropical climates.<sup>21,29</sup>

**Reproduction:** By seed;<sup>21</sup> as perennial, may root at nodes.<sup>29</sup>

**Leaves:** Alternate, simple, triangular; entire, glaucous, and glabrous; recurved prickles on lower veins and petioles;<sup>8</sup> bright to pale green color (sometimes reddish when young); 3-8 cm (1½-3½ in) long and 5-9 cm (2-3½ in) wide; peltate;<sup>4,6</sup> perfoliate ocrea.<sup>3,4,6,18,21</sup>

**Stems:** Wiry, slender, and armed with small, recurved prickles;<sup>3,17</sup> becomes reddish with age.<sup>17,29</sup>

**Flowers:** Small, 1.5 mm (½ in);<sup>29</sup> 10-15 per terminal or axillary spike-like racemes, 1-2 cm (¾-¾ in) long; greenish-white to pink;<sup>6,21</sup> blooms early summer to fall;<sup>8,13</sup> perfect, primarily self-pollinates with some outcrossing.<sup>15</sup>

**Fruits/Seeds:** Perianth persistent, 3-5 mm (⅛-¼ in), thickening to a fleshy, berry-like, iridescent blue covering;<sup>6,21</sup> contains one seed<sup>24</sup> that is a round, shiny black achene;<sup>21,29</sup> each plant may produce 50-100 seeds;<sup>14</sup> buoyant;<sup>3,21</sup> water-, bird-, small mammal-, and human-dispersed,<sup>13,21,29</sup> July-Nov.;<sup>18,21</sup> germinates mid-Mar.-Apr.;<sup>13</sup> cold stratification may be required in colder environments<sup>1,17</sup> but is detrimental in warmer areas; scarification may promote germination;<sup>17</sup> most seed germinate within 2-3 years,<sup>13</sup> but seeds may persist in seed bank for ≥6 years;<sup>10</sup> seed from immature fruit still 35% viable.<sup>23</sup>

## MILE-A-MINUTE WEED

*Persicaria perfoliata* (L.) H. Gross

[*Polygonum perfoliatum* L.; *Ampelygonum perfoliatum* (L.) Roberty & Vautier<sup>18</sup>]

POLYGONACEAE

## *Persicaria perfoliata*

### MILE-A-MINUTE WEED

**Habitat:** Native to Eastern Asia;<sup>3,6,13</sup> introduced to the U.S. in 1890s<sup>19</sup> near Portland, OR, with no local spread;<sup>25</sup> found in PA in mid-1930s; along streams, in floodplains,<sup>21</sup> at roadsides, and in disturbed sites (harvested forests) and open woodlands;<sup>16,20</sup> possible preference for moist soils;<sup>8</sup> growth more vigorous (thicker stems and nodes) in full sun.<sup>9</sup>

**Comments:** Easily spread in nursery stock;<sup>8</sup> relatively shade-tolerant compared to native congeners;<sup>8</sup> performs better in open areas;<sup>18</sup> numerous native insects feed on it with little effect;<sup>18,27</sup> the weevil *Rhinoncomimus latipes* is an effective biocontrol,<sup>28</sup> reducing the vines' reproductive potential by 37%;<sup>22</sup> first released in the U.S. in 2004,<sup>2</sup> this biocontrol agent's herbivory impact is greater in full sun<sup>9</sup> and with adequate soil moisture;<sup>2</sup> adding a pre-emergent herbicide to biocontrol release results in an 80% reduction in *P. perfoliata* cover;<sup>12</sup> lowest temperature threshold for weevil development estimated at 10.2 °C (50 °F) with about 358 degree days needed from egg to adult;<sup>11</sup> sheep grazing reduces cover of *P. perfoliata* by 19% and significantly reduces flowering;<sup>5</sup> has anticarcinogenic compounds;<sup>26</sup> used in Eastern Asia as a medicinal plant for over 300 years.<sup>7</sup>

**Similar Native Species:** *P. sagittatum* and *P. arifolium* but leaves not glaucous, peltate, or triangular and ocreae not perfoliate.<sup>8,20,21</sup>





**Habit:** Perennial, twining vine<sup>3</sup> that trails or climbs to 30 m (98 ft);<sup>6,12,25</sup> legume with symbiotic nitrogen-fixing bacteria.<sup>9</sup>

**Reproduction:** Tubers, root suckers,<sup>19</sup> and runners that root at nodes;<sup>9,19</sup> by seed;<sup>6,9,12</sup> successful seed production rare in cold climates;<sup>20,25</sup> stem cutting propagation not successful.<sup>20</sup>

**Leaves:** Alternate, trifoliate, up to 18 cm (7-8 in) long with long petioles; dark green; pubescent underside; leaflets with smooth or lobed margin, middle leaflet usually has 3 shallow lobes and equal base, side leaflets have 1-2 lobes and unequal bases.<sup>6,12,25</sup>

**Stems:** Up to 2.5 cm (1 in) diameter but can be 10 cm (4 in);<sup>19</sup> brownish; young stems with tan/bronze hairs;<sup>6,12,19,25</sup> may grow 30 cm (12 in)/day; dieback in fall/winter;<sup>19</sup> some overwinter.<sup>37</sup>

**Flowers:** Up to 2.5 cm (1 in) wide; papilionaceous, reddish-purple, upper petal base yellow;<sup>5,19</sup> on elongate, branching racemes to 20 cm (8 in) long emerging from leaf axils; grape scented;<sup>6,12,19,25</sup> May-Nov. on vertically growing plants<sup>9</sup> in direct sunlight.<sup>19</sup>

**Fruits/Seeds:** Early/late fall; flat, pubescent pod 4-5 cm (1½-2 in) long;<sup>12,19</sup> seeds kidney shaped, 3-4 mm (1/8-3/16 in);<sup>39</sup> germination at 15-35 °C (59-95 °F), in light or dark, and best after scarification<sup>32</sup> (mechanical<sup>36</sup> or sulfuric acid<sup>33</sup>); cold stratification not required;<sup>33</sup> mammal and bird dispersed.<sup>9</sup>

**Habitat:** Native to China, Eastern Asia;<sup>14,25</sup> introduced to the U.S. in late 1800s;<sup>14</sup> forest edges, roadsides, old fields, and disturbed areas; shade-intolerant<sup>3</sup> but found in forests;<sup>7,8</sup> shading reduces shoot and root growth,<sup>9,35</sup>

## KUDZU VINE

*Pueraria montana* var. *lobata* (Willd.)

Maesen & S.M. Almeida ex Sanjappa & Predeep  
[*P. lobata* (Willd.) Ohwi.]

FABACEAE

*Pueraria montana* var. *lobata*

**KUDZU VINE**

but less for shoots at the expense of the roots;<sup>11</sup> not tolerant of cold;<sup>4</sup> tolerant of compacted, nutrient-poor soils,<sup>34</sup> though phosphorus is limiting;<sup>18</sup> older plants with deep roots are more drought tolerant;<sup>30</sup> positive growth response to increasing CO<sub>2</sub>.<sup>28</sup>

**Comments:** Though not established in all niches of U.S. with climate like its native range, exists where climate is different from its native range, suggesting spread likely and continued expansion into new climates possible;<sup>2</sup> potentially allelopathic; leaf and root extracts reduce germination of lettuce and radish, but stem and seed extracts do not;<sup>22</sup> phytotoxic properties retained in soil beyond litter decomposition;<sup>23</sup> invaded soils show substantial increases in net N mineralization and nitrification as well as increases in nitric oxide emissions;<sup>13</sup> isoprene emission possible ozone source;<sup>29</sup> in areas with extensive kudzu invasion, there is a direct increase in the number of high ozone events;<sup>13</sup> simulated herbivory (removal of 50% of leaves and root drilling) has no effect on above ground biomass, but 75% damage shows some reduction in biomass;<sup>10</sup> high genetic diversity but low population differentiation in U.S. suggests multiple introductions from different sources and subsequent gene exchange;<sup>16,21,31</sup> continental U.S. has subject variety, Hawaii has *P. montana* var. *chinensis*; variety hybridization occurs;<sup>15</sup> potential carbohydrate production from southern populations rivals maize and sugar cane—being considered as a biofuel;<sup>26</sup> uses include soil enhancer in South American humid tropics,<sup>27</sup> erosion control,<sup>19,25</sup> feed,<sup>5,18</sup> fiber,<sup>38</sup> ornamental plantings,<sup>14</sup> and starch source;<sup>1</sup> treatment for alcoholism,<sup>17,24</sup> colds, asthma, diarrhea, fever, and anemia.<sup>30</sup>

**Similar Native Species:** Boykin's clusterpea (*Dioclea multiflora*), but fruit is 2-winged along upper suture, flower is smaller.<sup>12</sup>





**Habit:** Prostrate, low-growing, mat-forming perennial vine  $\leq 15$  cm (6 in) tall;<sup>17</sup> herbaceous, evergreen groundcover.<sup>16,21</sup>

**Reproduction:** Primarily vegetatively, also by seed;<sup>20</sup> cross-fertilization best for seed set, self-fertilization rare.<sup>11</sup>

**Leaves:** Opposite, simple; egg-shaped, 1-3.5 cm (~½-1½ in) long and 1-2 cm (~½-¾ in) wide; tip blunt to pointed; margin smooth; upper surface shiny, smooth, dark green with lighter green central vein;<sup>10,17</sup> sometimes variegated;<sup>21</sup> lower surface also smooth, but pale; petioles 1-3 cm (~½-1¼ in) long; petioles and leaves exude milky juice when broken;<sup>8,10,12,17</sup> new leaves form just after onset of flowering in early spring and overwinter.<sup>16</sup>

**Stems:** Smooth, green, shiny;<sup>17</sup> somewhat woody;<sup>12</sup> will root at nodes;<sup>19,21</sup> flowering stems erect.<sup>19</sup>

**Flowers:** Hermaphroditic;<sup>11</sup> solitary in axils;<sup>19</sup> lilac to blue (sometimes white); about 2.5 cm (1 in) wide; 5 petals<sup>10,17,19</sup> with truncate lobes;<sup>10</sup> pedicel 1-3 cm (~½-1¼ in) long;<sup>17</sup> Mar.-June;<sup>10</sup> double-flowered varieties exist and correlate with plants transplanted to a sunny environment.<sup>26</sup>

**Fruits/Seeds:** Dry, abruptly beaked capsule (follicle) 2-2.5 cm (¾-1 in) long, splits on 2 sides;<sup>10,17</sup> fruit seldom set on cultivated plants;<sup>8</sup> seed thought to be ant-dispersed (may limit dispersal range);<sup>15</sup> described as having no active dispersal mechanism.<sup>13</sup>

**Habitat:** Native of Europe<sup>12,17,19</sup> and Western Asia<sup>8,20</sup> where it is considered a late-successional forest interior species;<sup>13</sup> prefers partial shade to shade and acid to neutral, well-drained soils;<sup>21</sup> can be slow to establish in full sun, but can spread rapidly in response to

## COMMON PERIWINKLE

*Vinca minor* L.

APOCYNACEAE

*Vinca minor*

## COMMON PERIWINKLE

more favorable conditions;<sup>9</sup> found along roadsides and in fields,<sup>17,19</sup> cemeteries,<sup>17</sup> woods,<sup>19</sup> and forest understories;<sup>20</sup> USDA hardiness zones 3-8.<sup>8</sup>

**Comments:** Older native populations have lower genetic diversity than more recent populations in same native range, suggesting different origins;<sup>3</sup> at least 29 cultivars, which differ in flower color and leaf variegation;<sup>8</sup> *V. major*, a similar species that may have invasive tendencies, is hardy in zones 6-9<sup>8</sup> and is a taller, coarser groundcover<sup>21</sup> with small, short hairs (cilia) along its leaf margins;<sup>12</sup> *V. minor* cold-tolerant;<sup>16</sup> adjusts its ability to respond to higher light levels via thermal dissipation of excess energy using the pigment zeaxanthin;<sup>5,6</sup> exhibits higher photosynthetic rates in shade than sun in winter and accumulates carbohydrates, which may contribute to its cold tolerance;<sup>1</sup> mycorrhizae colonize roots, but whether association is obligate or mutually beneficial is unclear;<sup>18</sup> negative impacts on spider abundance and composition;<sup>2</sup> may suffer from leaf spots, stem lesions, root rot, canker, dieback, and cucumber mosaic virus;<sup>8</sup> deer may consume in spring, autumn, and winter, but not preferred;<sup>22</sup> produces the allelochemical vincamine (an alkaloid) but its toxicity to other organisms is uncertain, possible effects on tree seedlings;<sup>4,7</sup> fungal endophytes may enhance growth and production of vincamine;<sup>25</sup> vincamine is used as a cerebral vasodilator (widens blood vessels);<sup>14,23</sup> late fall herbicide application may effectively reduce its cover.<sup>24</sup>

**Similar Native Species:** Star chickweed (*Stellaria pubera*) but not evergreen and much less mat-forming, flowers smaller and white; partridgeberry (*Mitchella repens*), but leaves smaller and rounder, flowers white, fruit scarlet or white berry.<sup>12</sup>





**Habit:** Herbaceous milkweed; perennial, twining, and climbing vine;<sup>11,13,21</sup> clonal;<sup>16</sup> broken tissue exudes milky juice.<sup>11,13,21</sup>

**Reproduction:** By seed<sup>13,16</sup> and deep (50 cm, 20 in) rhizomes; monoecious,<sup>6,24</sup> selfing possible.<sup>7,16</sup>

**Leaves:** Opposite, entire, oblong to ovate, 5-10 cm (2-4 in) long; acuminate; round or subcordate base; petiole short;<sup>5,11,13,21</sup> glabrous, but veins and margin may have short curved hairs.

**Stems:** Glabrous or with short curved hairs; twining;<sup>16</sup> height typically 1-2 m (3-6½ ft).<sup>16</sup>

**Flowers:** May-Sep.;<sup>13,21</sup> small (6-8 mm, ~¼ in), 6-10 form an umbel-like cyme;<sup>13,16,21</sup> cymes located at every node except the bottom 3-4;<sup>16</sup> corolla purple-black, 5 fleshy lobes with tiny hairs;<sup>13,21</sup> corona inconspicuous;<sup>13</sup> peduncles 1-3 cm (⅓-1¼ in) long;<sup>22</sup> open 6-8 days; nectar smells of rotting fruit, strongest mid-day; pollinated primarily by flies.<sup>16</sup>

**Fruits/Seeds:** Smooth, slender follicle 4-7 cm (1½-2¾ in) long;<sup>13,16,21</sup> each contains many comose seeds that are released in fall when fruit splits lengthwise; primarily wind-dispersed,<sup>13,16</sup> most seed falls within a few meters of parent;<sup>3</sup> seed of vines growing at greater heights may travel 72 m (236 ft);<sup>9</sup> polyembryonic;<sup>6,22</sup> no dormancy or stratification required; seed viability of selfed and open-pollinated flowers not significantly different;<sup>6,24</sup> 30-50% germination rate; seeds germinate in spring or fall,<sup>16</sup> most in the first year; seed bank >3 years unlikely.<sup>8,20</sup>

**Habitat:** Introduced from Mediterranean Europe;<sup>16</sup> earliest records in U.S. from Ipswich, MA, in 1854;

## BLACK SWALLOW-WORT

*Vincetoxicum nigrum* (L.) Moench

[*Cynanchum louiseae* Kartesz & Gandhi;

*C. nigrum* (L.) Pers.]

ASCLEPIADACEAE

## *Vincetoxicum nigrum*

### BLACK SWALLOW-WORT

disturbed areas, roadsides, fence rows, old fields, barrens, and woodlands; prefers calcareous soils,<sup>22</sup> but tolerates wide range of soil pH;<sup>17</sup> tolerates drier soils, full sun, and closed canopy forests; seed production lower in shaded sites;<sup>5,19,24</sup> forms monospecific populations under all light conditions,<sup>6</sup> but prefers higher light.<sup>1</sup>

**Comments:** Diploid and tetraploid races exist;<sup>22</sup>

*V. hirundinaria* (yellowish, white flowers) is native to Eurasia<sup>13,15</sup> and less common in U.S.; related nonnative *V. rossicum* (lighter colored flowers with longer peduncles<sup>22</sup>) from Ukraine and Russia is also invasive—its seed are lighter and travel further than *V. nigrum* seeds,<sup>9</sup> and it is most abundant in the lower Great Lakes Basin,<sup>22</sup> forms monospecific populations,<sup>2</sup> and reduces arbuscular mycorrhizal fungi activity;<sup>14</sup> monarch butterfly oviposit on both *V. nigrum* and *V. rossicum*, but larvae unlikely to survive,<sup>4,18</sup> preferring its native host plant;<sup>7,18</sup> presence of both species reduces invertebrate and vertebrate diversity;<sup>6,10</sup> both species produce the phytotoxin -(-) antofine that has inhibitory effects at high concentration levels;<sup>12</sup> leaf-feeding moth *Hypena opulenta* approved as a biocontrol.<sup>23,25</sup>

**Similar Native Species:** Sandvine (*C. laeve*) but leaves cordate, flowers smaller white to green, corona lobes evident and erect; maroon Carolina milkvine (*Matelea carolinensis*) but leaves cordate, flowers larger, fruit covered in small, sharp projections.<sup>5,13</sup>





**Habit:** Spiny, deciduous shrub;  $\leq 2.5$  m (8 ft) tall and wide.<sup>3,8,12</sup>

**Reproduction:** Seeds;<sup>8</sup> by stump or stem sprouts.<sup>3,24</sup>

**Leaves:** Alternate, simple, clusters at each node;<sup>3,12</sup> entire, spatulate; 1.25-2 cm ( $\frac{1}{2}$ - $\frac{3}{4}$  in) long; bright green above, lighter below;<sup>3,7,8</sup> fall color red to purple depending on cultivar;<sup>3</sup> appear before tree canopy leaf out and remain after canopy leaf abscission.<sup>24</sup>

**Stems:** Numerous; may senesce and be replaced every few years;<sup>5,24</sup> stems/shrubs mortality independent of *B. thunbergii*'s population density;<sup>5,24</sup> reddish-brown, older stems gray; inner bark yellow;<sup>12,25</sup> angled or grooved, glabrous; usually stiff, single spines at nodes  $\sim 1.25$  cm ( $\frac{1}{2}$  in) long.<sup>3,25</sup>

**Flowers:** Apr.-May;<sup>3,8,12</sup> small, 6 petals, yellow, stalked; 1-4 form umbel-like clusters at nodes; nectaries on both sides of each of 6 stamens; anthers have a tripping mechanism; pollinated by bees<sup>20</sup>—first visit removes  $>50\%$  of the sticky pollen;<sup>13</sup> perfect, may self- or cross-pollinate.<sup>3</sup>

**Fruits/Seeds:** Early–late summer; oblong to round berry, 1-1.25 cm ( $\frac{3}{8}$ - $\frac{1}{2}$  in); bright red, dry, 1-seeded;<sup>7,8,12</sup> high to intermediate light levels maximize production;<sup>24</sup> fruit removal may be highest in low light;<sup>24</sup> may remain on shrub through winter;<sup>3</sup>  $>90\%$  fruit falls  $\leq 1$  m (3 ft) from shrub but mapped up to 80 m (262 ft) away; dispersed by birds (not a preferred food<sup>24</sup>), including turkey and grouse, as well as deer;<sup>4</sup> cold stratification and alternating temperatures improve germination;<sup>2,22,24</sup> seed bank possibly lacking or short-lived.<sup>1</sup>

**Habitat:** Introduced to U.S. from Japan between 1864 and 1879;<sup>3,24</sup> full sun to full shade; most soil types and habitats—dry ridgetops to wetlands, roadsides to closed canopy forests.<sup>5,21</sup>

## JAPANESE BARBERRY

*Berberis thunbergii* DC.

BERBERIDACEAE

SHRUB

## *Berberis thunbergii* JAPANESE BARBERRY

**Comments:** At least 47 cultivars;<sup>3</sup> related *B. julianae* (evergreen, toothed leaves), escaping in several states, has invasive tendency;<sup>9</sup> *B. thunbergii* var. *atropurpurea* is among the most invasive—producing more seeds with a higher germination rate emerging into seedlings with greater vigor than other common cultivars,<sup>14</sup> yet most escaped populations are genetically distinct from var. *atropurpurea*;<sup>17</sup> feral var. *atropurpurea* descendants can be found<sup>19</sup> but may be highly inbred<sup>18</sup> and may be green in high-shade areas such as closed-canopy forests;<sup>15,16</sup> may alter soil conditions to its benefit by increasing pH, nitrification, and nitrate;<sup>6</sup> nonnative earthworm association possibly with increased litter decomposition or an agricultural connection;<sup>10,11</sup> positive association between the abundance of questing blacklegged ticks (deer tick, *Ixodes scapularis*) and higher incidences of Lyme disease, likely due to increase relative humidity in dense *B. thunbergii* thickets;<sup>28,29</sup> deer herbivory minimal,<sup>4</sup> but rabbits cause severe winter damage;<sup>26</sup> growth minimal in low light—seedling survival drops from 90% in intermediate-high light to 40% in low light, but survivors persist;<sup>24</sup> directed burning with a propane torch is effective control if done twice per growing season.<sup>27</sup>

**Similar Native Species:** American barberry (*B. canadensis*) but leaves toothed, spines usually 3-pronged.<sup>23</sup>





**Habit:** Deciduous shrub or small tree up to 6 m (18 ft) tall and 9 m (27 ft) wide.<sup>6,11,15,18</sup>

**Reproduction:** Primarily by seed;<sup>11</sup> also by stump or root sprouting; cuttings for 'Ellagood' cultivar.<sup>23</sup>

**Leaves:** Alternate, simple; oval, entire, wavy; gray-green above, silvery-scaly underside appears to shimmer;<sup>11,15,18</sup> young leaves may be silvery on both sides.<sup>6</sup>

**Stems:** Twigs silvery or golden brown; often thorny;<sup>11,15,18</sup> brownish scales give speckled appearance.<sup>6,15</sup>

**Flowers:** Clusters of 1-8 at leaf axils; tubular; 4 of each petals and stamens;<sup>15,18</sup> cream to light yellow,<sup>15</sup> exterior silvery-scaly; fragrant; Apr.-June.<sup>11,15,18</sup>

**Fruits/Seeds:** Fruit 6-8 mm (~1/4 in); silvery with brown scales when immature, ripens to speckled red<sup>11,15,18</sup> or yellow;<sup>9</sup> Sept.-Nov.;<sup>15,18</sup> fleshy, edible (bitter to semi-sweet);<sup>15</sup> high in lycopene;<sup>9</sup> 1-seeded;<sup>11,15,18</sup> seed dispersed by birds (but not a preferred food<sup>21</sup>) and water;<sup>14</sup> cold stratification improves germination—optimized by alternating day/night temperatures of 20-30/10 °C (68-86/50 °F);<sup>2</sup> persistent seed bank possible considering related nonnative *E. angustifolia* seeds remain viable for 3 years in the lab and have a dormancy period;<sup>13</sup> despite its abundance (compared to 31 years ago), one study found no *E. umbellata* seeds in the seed bank.<sup>5</sup>

**Habitat:** Native to Asia; open woods, forest edges, roadsides, riparian areas, fencerows, meadows, pastures, sand dunes, mine spoils, and other disturbed

**AUTUMN OLIVE**  
*Elaeagnus umbellata* Thunb.  
ELAEAGNACEAE

SHRUB

## *Elaeagnus umbellata* AUTUMN OLIVE

areas;<sup>5,14,15,18,21</sup> possibly shade-tolerant; tolerant of infertile and dry soils, as well as drought and salt;<sup>7</sup> acidic soils may reduce seedling survival;<sup>4</sup> USDA hardiness zones 4-8.<sup>6</sup>

**Comments:** At least 5 cultivars;<sup>23</sup> leaves have high N;<sup>3</sup> forms N-fixing actinorhizal root nodules<sup>22</sup> with actinomycete *Frankia* bacteria;<sup>12</sup> increases soil N,<sup>1</sup> which may benefit black walnut,<sup>10</sup> or harm an ecosystem by changing the soil nutrient properties native species were adapted to and possibly leading to increased exotic plant species invasions,<sup>1</sup> though these outcomes are unconfirmed; infection by N-fixing bacteria may induce defense-related genes;<sup>19</sup> allelopathic potential<sup>17</sup> but weak compared to other known allelopathic invasive species;<sup>20</sup> can maintain C-assimilation while under water stress;<sup>16</sup> may tolerate fire temperature up to 500 °C.<sup>8</sup>

**Similar Native Species:** Silverberry (*E. commutata*) but leaves shorter, egg-shaped with both sides scaly, silver-brown; stems thornless.<sup>11</sup>





**Habit:** Deciduous<sup>14,20,26</sup> shrub typically 2.5 m (8 ft) tall<sup>14,26</sup> but possibly 7 m (23 ft) with equal spread;<sup>8,20</sup> cultivar dictates size;<sup>8</sup> tends to grow slowly with short spurts.<sup>8</sup>

**Reproduction:** By seeds,<sup>14,20,26</sup> primarily outcrosses;<sup>3</sup> by stem cuttings, plant hormone IBA improves success;<sup>6,8,27</sup> and possibly by root suckers;<sup>23</sup> nursery industry mainly propagates with cuttings,<sup>9</sup> but spread most likely by seed.

**Leaves:** Opposite, subsessile; elliptic to obovate, ≤8 cm (3½ in) long; sharply serrulate; upper surface dark green, turn bright red in autumn; may be downy beneath.<sup>8,20</sup>

**Stems:** Opposite; 2-4 conspicuous corky wings<sup>8,14,20,26</sup> run the stem length<sup>27</sup> serving no apparent function;<sup>2</sup> 'Compactus' cultivar corky wings may be less pronounced or absent.<sup>7</sup>

**Flowers:** Small, 6-8 mm (~¼ in) wide; inconspicuous yellow-green; 4 petals,<sup>8,20</sup> very short stamens opposite petals;<sup>14</sup> perfect;<sup>14</sup> Apr.-June.<sup>8,20</sup>

**Fruits/Seeds:** Fruit smooth, purplish; 1-4-lobed capsule<sup>14,20</sup> containing 3-5 locules each with 1-6 seeds; fruit matures Sept.-Oct. with lobes splitting to reveal orange aril;<sup>14,20,26</sup> releases seeds through Jan.;<sup>23</sup> birds disperse seeds;<sup>8</sup> germination may require cold moist stratification for 1-3 months<sup>8</sup> or sequence of cold moist to warm moist back to cold moist;<sup>3,25</sup> prolonged dormancy regulated by abscisic acid;<sup>29</sup> seed bank likely but longevity unknown.<sup>8</sup>

**Habitat:** Indigenous to Northeast Asia and central China;<sup>8,14,26</sup> escaped cultivation and established in open areas, such as prairies<sup>1</sup> and woodlands;<sup>8,10,11,12,13,24</sup> appears

## WINGED BURNING BUSH

*Euonymus alatus* (Thunb.) Siebold

CELASTRACEAE

SHRUB

## *Euonymus alatus*

### WINGED BURNING BUSH

to prefer sunny conditions, though does well in deep shade without affecting fall's red foliage; may dominate mature forest understory;<sup>10</sup> prefers well-drained soils, sensitive to drought; USDA hardiness zones 4-9<sup>8</sup> but possibly prefers more northern zones due to seed dormancy requirements.<sup>16</sup>

**Comments:** Extensive use in ornamental plantings; ≥10 cultivars,<sup>8</sup> 'Compactus' among most popular;<sup>7,8</sup> some cultivars may produce fewer seeds at lower survival rates, but still enough to be considered invasive;<sup>3,25</sup> triploid plants, which are likely infertile, were produced via endosperm culture;<sup>28</sup> transgenic plants (created using *Agrobacterium tumefaciens*) that yield fruit but no or nonviable pollen or seed are in development;<sup>4</sup> if these triploid and transgenic plants are proven sterile, they may be less invasive; possible medicinal applications include cytotoxic activity against tumor cells<sup>19,22</sup> and treatments for inflammation,<sup>18</sup> stomachaches,<sup>15</sup> and diabetes;<sup>5</sup> minimally affected by a few pathogens, (e.g., two-spotted spider mites<sup>8,21</sup> and nematodes<sup>8</sup>); *Whetzelinia sclerotiorum* fungus may cause dieback; overwinter host of black bean aphid (*Aphis fabae*).<sup>17,30</sup>

**Similar Native Species:** Wahoo (*E. atropurpureus*) but autumn leaf color is yellow; strawberry bush (*E. americanus*) but flowers are 5-merous.<sup>14</sup>





**Habit:** Semi-deciduous (northern latitudes) to evergreen (southern latitudes);<sup>4,5</sup> opposite-branching shrub or tree, grows to 6 m (20 ft)<sup>4</sup> but possibly up to 10 m (33 ft) tall<sup>19</sup> and 4.5 m (15 ft) wide;<sup>5</sup> shrubs likely composed of 1-3 ramets.<sup>14</sup>

**Reproduction:** By seed<sup>4,14,23</sup> and vegetatively via root suckering.<sup>4,14,22</sup>

**Leaves:** Opposite, simple, elliptic-oblong; 2.5-7.6 cm (1-3 in) long and 1.3-2.5 cm (½-1 in) wide; margin smooth; dark dull green above; midrib pubescent below; petiole ~3 mm (⅛ in) long.<sup>4</sup>

**Stems:** Pubescent, gray-yellow.<sup>4</sup>

**Flowers:** Small, cream to white on pedicels, stamens exserted slightly beyond or equal to corolla lobes;<sup>12</sup> axillary and terminal open/diffuse panicles,<sup>15</sup> 5-7.5 cm (2-3 in) long;<sup>5</sup> may produce up to 270 flowers per ramet;<sup>14</sup> early Apr.-May;<sup>3,12</sup> hermaphroditic; primarily pollinated by insects in Lepidoptera Order, such as moths.<sup>3</sup>

**Fruits/Seeds:** Dull, waxy, purple-black fruit,<sup>5</sup> ~5 mm (¼ in) diameter;<sup>24</sup> fleshy part is dry and fibrous; persists through winter;<sup>5</sup> usually 1 seed (but up to 4)<sup>6,17</sup> ~3 mm (⅛ in) long and 2 mm (~⅓ in) wide;<sup>24</sup> one ramet produces up to 46 seeds;<sup>14</sup> estimated 1,300 seeds/m<sup>2</sup> of its canopy;<sup>23</sup> if small mammals ingest the fruit, seed rarely survives intact;<sup>24</sup> when birds ingest the fruit they disperse seed;<sup>5,25</sup> deer consume the fruit<sup>19</sup> and may disperse seed; 60 days of cold stratification improves germination;<sup>1</sup> higher germination rates may occur for seeds in shallowly-buried intact fruit than buried or

## CHINESE PRIVET

*Ligustrum sinense* Lour. [*L. villosum* May]

OLEACEAE

SHRUB

*Ligustrum sinense*  
**CHINESE PRIVET**

surface sown bare seeds; >95% of seeds persist <12 months—seed bank formation unlikely.<sup>16</sup>

**Habitat:** Native to China, Laos, and Vietnam;<sup>5,14</sup> introduced to the U.S. in 1852;<sup>4,5</sup> naturalization noted as early as 1933;<sup>18,26</sup> found in open areas as well as forest interiors<sup>14</sup> with light levels down to 5% full sunlight;<sup>2</sup> invades limestone cedar glade/woodland ecosystems that contain several endemic species;<sup>14</sup> may withstand short-term flooding because it can form lenticels and adventitious roots;<sup>2</sup> associated with lower elevations, shallow slopes, moist less acidic to alkaline soils,<sup>8,21</sup> and nonnative earthworms.<sup>11</sup> USDA hardiness zones 6-10.<sup>4,5</sup>

**Comments:** At least 5 cultivars,<sup>4,26</sup> variegated cultivars tend to produce fewer seed;<sup>4,5,10,26</sup> plant height and leaf area increase in response to lower light levels, unlike an associated native shrub species; low-light conditions decrease flowers to 65 and fruits to 12 per ramet;<sup>14</sup> a fall/winter food source for deer in GA, when acorns are scarce;<sup>19</sup> removal from riparian forests increases butterfly<sup>9</sup> and beetle<sup>20</sup> abundance; forms arbuscular mycorrhizae associations, presence of *L. sinense* may increase their abundance;<sup>7</sup> litter is high in N, low in lignin and cellulose, and rapidly decomposed;<sup>13</sup> genus has several potentially invasive species, including more northern-zoned *L. obtusifolium*<sup>17</sup> that has little published about it; no native *Ligustrum* spp. in North America may make it a good candidate for biocontrol—a lace bug, *Leptoypha hospita*, may be most promising option.<sup>27,28</sup>

**Similar Native Species:** Fringe tree (*Chionanthus virginicus*) but leaves are larger, flower petals have long linear lobes, panicles droop, and fruit is blue; coralberry (*Symphoricarpos orbiculatus*) but flowers are in small axillary clusters and fruit is red.<sup>6</sup>





**Habit:** Deciduous shrub  $\leq 5$  m (16 ft) tall/wide.<sup>12,16,24,31,38</sup>

**Reproduction:** By seed; main stem may re-sprout, cut young stems and bare roots may root.<sup>12,16,44</sup>

**Leaves:** Opposite; inverted egg-shaped, broadest in middle, tapering at both ends, tip abruptly pointed, 3.5-8.5 cm (1½-3½ in) long; entire with short ciliate; upper surface dark green, underside paler, both surfaces have hairs on veins;<sup>6,16,24</sup> petiole short, pubescent;<sup>16,24,38</sup> leaf out before and senescence later than many woody, native deciduous species.<sup>11,24</sup>

**Stems:** Grayish-brown; short hairs when young, broad ridges and grooves (appears striped) on older stems; internodes hollow; nodes and young stems may have white-tan pith.<sup>12,24</sup>

**Flowers:** May-June, 5-8-year-old plants;<sup>10</sup> usually 2 at a node; 15-20 mm (½-¾ in) long;<sup>16,24</sup> 2-lipped, anthers longer than lips;<sup>24</sup> pedicels shorter than petioles;<sup>24,38</sup> white ages to yellow;<sup>16,24,38</sup> nectar mostly sucrose, attracts primarily bees; ~21,000 flowers/shrub, ~34 g (1.2 oz) sugar/day/shrub;<sup>42</sup> moderate shade strongly reduces flower production.<sup>41</sup>

**Fruits/Seeds:** Bright red at maturity in late summer to fall;<sup>24,38</sup> pulpy berry with 1-6 seeds (pers. obs.); moderate shade strongly reduces fruit set, number, and mass as well as seed number and size<sup>3,17</sup> but forest interior shrubs still produce fruit;<sup>25</sup> seeds may require cold, warm, or no stratification—inhconsistencies may be cultivar-dependent (Rem-Red requires cold, Cling-Red does not);<sup>44</sup> optimal germination at 25 or 15 °C (77 or 59 °F) in light;<sup>3,21</sup> 54-81% germinate with warm, moist conditions in light (30-55% in dark); seed bank unlikely or limited;<sup>20,29,30</sup> birds disperse (e.g., American robin, but cedar waxwings' digestion destroys seed) into suitable habitats<sup>2</sup> but don't prefer the lipid-poor fruit;<sup>23,46</sup> deer ingest fruit and defecate some viable seed (less than seed directly off shrubs);<sup>7</sup> small mammals consume seeds despite bitter seed coat but not a significant part

## AMUR HONEYSUCKLE

*Lonicera maackii* (Rupr.) Herder

CAPRIFOLIACEAE

SHRUB

## *Lonicera maackii*

### AMUR HONEYSUCKLE

of their diet;<sup>47,48</sup> greater seed predation than associated native species in some cases.<sup>33</sup>

**Habitat:** Native to Eurasia; introduced to U.S. in late 1850s;<sup>12,28</sup> urban areas, old fields, floodplains, disturbed ground, upland/lowland forests (early/late successional), wood edges, and roadsides;<sup>24,38</sup> higher growth rates and fitness in high light;<sup>22,28,29,32</sup> USDA hardiness zones 3-8.<sup>12</sup>

**Comments:** Allelopathic impact on native seed germination and possible facilitation of self-germination,<sup>8,13</sup> some co-occurring native shrubs have similar allelopathic effects;<sup>34</sup> removal increases survival/fecundity of associated natives;<sup>18,19,35</sup> litter decays 2-4 times faster and releases nitrogen faster than sugar maple litter;<sup>15,43</sup> lower soil moisture<sup>37</sup> and higher transpiration rates<sup>5</sup> may make water more limiting at invaded sites; preferential American robin nesting despite higher predation rates (nests lower) compared to native shrubs;<sup>40</sup> other birds experience lower nest survival in early spring and fewer fledglings than with other shrub species;<sup>39</sup> serves as cover for several rodent species on cloudless nights;<sup>14</sup> exposure to fruit and flower sediment reduces survival and growth of some stream macroinvertebrates;<sup>9</sup> its plant extracts more likely to kill some insect<sup>8</sup> and tadpole species than a water control;<sup>45</sup> presence increases spider abundance in forests;<sup>27</sup> invaded plots have greater richness and abundance of some insects compared to uninvaded plots with same shrub diversity;<sup>26</sup> deer prefer invaded sites leading to increases in lone star ticks (*Amblyomma americanum*) carrying ehrlichiosis at these sites;<sup>1</sup> honeysuckle leaf blight (*Insolibasidium deformans*) impacts may be increasing;<sup>4</sup> a density-dependent effect of fungal seed pathogens may explain greater seed bank decline compared to associated native species seed bank in an invaded site;<sup>36</sup> cross with *L. tatarica* forms *L. x bella*.<sup>12</sup>

**Similar Native Species:** Fly honeysuckle (*L. canadensis*) but smaller size, leaves not abruptly pointed, flowers not strongly bilabiate.<sup>16</sup>





**Habit:** Deciduous shrub or tree to 8 m (24 ft) tall and wide;<sup>5,6,10,26</sup> tree-like under closed canopies, shrub-like in open conditions.<sup>3</sup>

**Reproduction:** Primarily by seeds; dioecious,<sup>6,10,26</sup> with some hermaphroditic flowers found on some shrubs;<sup>6</sup> may sucker from base; can sprout from stumps.<sup>11</sup>

**Leaves:** Opposite, some alternate; elliptic to oblong/ovate, 3-7 cm (1¼-2¾ in) long—twice as long as wide; often abruptly pointed with rounded teeth (each with a gland<sup>21,29</sup>) on the margin;<sup>10,26</sup> pinnately veined, lateral veins curve upward;<sup>10,21,26</sup> upper surface dark green, lower light green;<sup>5,10,21</sup> yellow-brown in fall;<sup>5,11</sup> young leaves downy beneath;<sup>11</sup> early leaf out,<sup>13</sup> late senescence; leaf lifespan exceeds that of native shrubs by 58 days.<sup>1,5,13</sup>

**Stems:** Opposite (or nearly) at right angles to trunk;<sup>11</sup> some end in a short thorn;<sup>5,10,11,21,26</sup> grayish/yellowish-brown; glabrous,<sup>5,21</sup> trunk becomes scaly with age.<sup>21,29</sup>

**Flowers:** Male 2-40 per cluster with 4 yellowish-greenish petals and sepals, 4 stamens; female 2-30 per cluster, usually without petals—if present linear and yellowish-brown, 4 green sepals shorter than those in males,<sup>10,11,21,24</sup> 4 vestigial stamens; Apr.-June,<sup>21</sup> appear with leaves;<sup>10,26</sup> females at 6:1 ratio to males; honey-scented calyx tube with nectarial lining; insect pollinated (bees and flies).<sup>11</sup>

**Fruits/Seeds:** Fruit glossy black at maturity in late summer/early fall; 0.5 cm (¼ in) diameter drupe contains 3-4 seeds;<sup>5,6,10,11,26</sup> most fruit falls beneath females; seed bird-dispersed, including migratory birds,<sup>30</sup> but not a preferred food source (even in native habitat);<sup>11</sup> premature dispersal limited due to presence of emodin which deters feeding;<sup>33</sup> cold stratification may<sup>2</sup> or may not<sup>1</sup> be required; optimal germination at 20 or 30 °C (68 or 86 °F);<sup>2</sup> may germinate in the dark;<sup>11</sup> germination rates high, around 85%;<sup>1</sup> seed longevity at least 2 years; dormancy and seed bank unclear.<sup>1,11,18</sup>

## COMMON BUCKTHORN

*Rhamnus cathartica* L.

RHAMNACEAE

## *Rhamnus cathartica*

### COMMON BUCKTHORN

**Habitat:** Native of Eurasia; introduced to U.S. in 1880s as a hedge plant;<sup>1,37</sup> may have been imported earlier as a medicinal;<sup>20</sup> calcareous soils in native habitat;<sup>1,11</sup> tolerates various soil conditions;<sup>1</sup> open/shaded areas, roadsides, woodlands, riverbanks (not flooded<sup>7</sup>), pastures,<sup>1,17,26,32</sup> mature forests;<sup>13</sup> USDA hardiness zone 3-7.<sup>5</sup>

**Comments:** Seedling establishment more likely on ground with little herb cover;<sup>9</sup> deer may browse it and may prefer it over native *Juniperus virginiana*,<sup>36</sup> though deer are less likely to be found in sites invaded by *R. cathartica* than non-invaded sites;<sup>34</sup> mice consume the seed;<sup>11</sup> voles consume the seedlings;<sup>9</sup> alternate host for oat crown/leaf rust<sup>22</sup> and overwintering host of soybean aphid;<sup>25,35</sup> associated with arbuscular mycorrhizae;<sup>11</sup> early leaf out more important than late senescence for carbon gain;<sup>13</sup> growth rates higher in light;<sup>14</sup> photosynthesizes at higher rate and shows greater fecundity than related native *R. caroliniana*;<sup>31</sup> leaves decompose faster than natives and are high in N;<sup>15</sup> presence may increase soil N, N mineralization rates, and pH;<sup>16</sup> associated with nonnative earthworms;<sup>27</sup> may be allelopathic;<sup>19</sup> fruit exudate inhibits seed germination more than leaf exudate, with no effect from bark or root;<sup>28</sup> contains compounds with antibacterial and anti-yeast activity;<sup>12</sup> a bark and fruit syrup used since the Middle Ages has purgative properties;<sup>24</sup> treating a single stem with herbicide can kill entire shrub;<sup>23</sup> no noted cultivars in the U.S., but 7-8 varieties documented in its native range;<sup>24</sup> microsatellite primers developed;<sup>4</sup> a fertile and vigorous hybrid (e.g., with *R. utilis*, Chinese buckthorn) documented in the U.S.<sup>8</sup>

**Similar Native Species:** Carolina buckthorn (*R. caroliniana*) but perfect flowers in parts of 5, leaves alternate.<sup>10,26</sup>





**Habit:** Perennial, deciduous shrub up to 5 m (16 ft) tall and wide; long, slender, arching branches.<sup>13,18,19</sup>

**Reproduction:** By seed;<sup>13,19</sup> may self-fertilize (less likely) or outcross [also with other roses, e.g., *R. wichuraiana* (nonnative tetraploid)]; male-donor-tetraploid crosses have larger fruit, more seeds;<sup>20</sup> asexual reproduction (agamospermy or seed formation without fertilization) documented but rare; self-fertilization not likely within a flower, but possible among flowers on the same plant, especially for cultivars with higher ploidy levels than diploid;<sup>33</sup> vegetatively by stem sprouts,<sup>13,19</sup> shallow root sprouts, and layering (rooting cane tips that touch the ground);<sup>29</sup> colonial.<sup>19</sup>

**Leaves:** Alternate, pinnately compound with 5-11 elliptic to obovate leaflets 2.5 cm (1 in) long with fine teeth;<sup>19,29,41</sup> underside of leaflets with hairs and paler than upper surface;<sup>29,41</sup> base of leaves have a fringed stipule.<sup>19,29,41</sup>

**Stems:** Flexible, green-red; rigid, recurved thorns with wide base;<sup>29</sup> thornless cultivar exists.<sup>5,9</sup>

**Flowers:** May-June;<sup>18,19,29</sup> white or slightly pink, 1-4 cm (3/8-1 1/2 in) wide; numerous, arranged in terminal panicles; pollinated by generalists like syrphid flies.<sup>26</sup>

**Fruits/Seeds:** Clustered, hard, maturing to red; 5-7 mm (1/4 in) wide, egg-shaped; glossy, smooth; Sept.-Oct.,<sup>13,29</sup> lasting into winter;<sup>13</sup> yellowish seeds;<sup>29</sup> dispersed by turkeys, deer mice,<sup>49</sup> and birds (some migratory),<sup>36,38</sup> though migratory birds<sup>46</sup> and rodents<sup>44</sup> show a preference for native fruit over nonnative (including *R. multiflora*) if both are present; few of the seeds ingested and most expelled after about 25 minutes, allowing for dispersal;<sup>30</sup> cold stratification required;<sup>2,5</sup> scarification with sulfuric acid increases germination

## MULTIFLORA ROSE

*Rosa multiflora* Thunb. [*Rosa cathayensis* (Rehder & E.H. Wilson) L.H. Bailey]

ROSACEAE

SHRUB

## *Rosa multiflora*

# MULTIFLORA ROSE

rate;<sup>52</sup> germinates best in light (~60%); <10% germinate in dark;<sup>50</sup> optimum germination at 10-20 °C (50-68 °F)<sup>51</sup> or 5 °C (41 °F),<sup>2,51</sup> but requires more time at the colder temperature;<sup>51</sup> seed bank<sup>31</sup> active up to 20 years.<sup>27,32</sup>

**Habitat:** Introduced to the U.S. from Asia ~1886;<sup>32</sup> promoted in 1930s and '40s by government agencies as a 'living fence,' soil stabilizer, and wildlife food/cover;<sup>11,15,22</sup> streambanks, pastures, roadsides,<sup>11</sup> forest canopy gaps, disturbed areas, and mature forests;<sup>23,41</sup> tolerates a variety of soils,<sup>13,34,43</sup> but prefers more alkaline and fertile soils;<sup>24</sup> USDA hardiness zones 5-8.<sup>13</sup>

**Comments:** Shrubs located on the forest edge or in canopy gaps have greater density and fecundity than those under a forest canopy;<sup>14</sup> used as rootstock for other roses<sup>42,45</sup> but not best choice for longevity and flower production;<sup>28</sup> repeated herbivory lethal;<sup>4,32</sup> large genome for a diploid in its native range;<sup>37</sup> in native-range pink flowers, obligate outcrossers, and diploid,<sup>10,48</sup> whereas introduced plants have predominantly white flowers, show some self-compatibility, and may have different ploidy levels;<sup>33</sup> in native range, rose rosette disease (also affects other cultivated and native roses<sup>6,17</sup>) may be lethal;<sup>12,16,22</sup> the mite *Phyllocoptes fructiphilus* likely the primary agent of rose rosette disease;<sup>25</sup> *R. multiflora* cryptic virus also associated with rose rosette disease;<sup>35</sup> responds well to mycorrhizal inoculation;<sup>7,8,40</sup> preferential nest site for veeries,<sup>21</sup> other birds,<sup>47</sup> and mammals such as rabbits;<sup>3</sup> abundance may decline while forest succession progresses;<sup>1</sup> ≥3 cultivars;<sup>13</sup> 371 rose species considered its progeny;<sup>39</sup> hip extracts have anti-inflammatory and pain-killing properties.<sup>53</sup>

**Similar Native Species:** Pasture rose (*R. carolina*) and smooth rose (*R. blanda*) but stipule not fringed.<sup>19</sup>





**Habit:** Perennial, deciduous shrub with arching canes.<sup>10</sup>

**Reproduction:** By seed, mostly self-pollinated,<sup>13</sup> but likely also pollinated by insects; vegetatively via rhizomatous growth and tip rooting.<sup>14</sup>

**Leaves:** Compound with 3 leaflets; terminal one ovate, rounded at the base, and sharply short-acuminate; lateral leaves are similar shape but smaller; all have dense white tomentose underneath; petioles covered with dense, long [3-5 mm (1/8-1/4 in)], glandular, purple hairs.<sup>10,15</sup>

**Stems:** Up to 2 m (6 ft) long; primocanes do not flower; floricanes produce flowers and fruit in second year and then alternate years; covered in dense, long, glandular, purple hairs; armed with a few bristle-like prickles;<sup>10</sup> arching canes prone to layering.<sup>12</sup>

**Flowers:** Second year, June;<sup>13</sup> hermaphroditic with glandular, hairy sepals and white to pale pink petals that are much shorter than sepals; form cymose panicles.<sup>7,10,15</sup>

**Fruits/Seeds:** Orange-red raspberry, 1 cm (3/8 in) long; July;<sup>12,15</sup> seeds likely bird and deer dispersed;<sup>16</sup> germinate in spring, light does not appear to be required;<sup>11</sup> seed bank possible; after 26 years of cold storage 8% germinated.<sup>5</sup>

**Habitat:** Native to Japan, China, and Korea; introduced to U.S. as breeding stock for blackberry and raspberry cultivars in 1890;<sup>13</sup> found on edges of forests, streams, and wetlands as well as in open woodlands; apparent preference for mesic conditions.<sup>13</sup>

## WINEBERRY

*Rubus phoenicolasius* Maxim.

ROSACEAE

SHRUB

## *Rubus phoenicolasius*

### WINEBERRY

**Comments:** Higher leaf N concentrations than native *Rubus* spp.;<sup>13</sup> light and litter and/or soil disturbance ensure growth of seedlings and adults, making gaps important for establishment in forests; larger gaps necessary for spread, because only stems >1 m (3 ft) begin layering and stems this length most likely to occur in larger gaps [>290 m<sup>2</sup> (0.07 acre)];<sup>11</sup> reproduction more likely under conditions that ensure florican growth<sup>8,9,11</sup> (e.g., larger gaps in closed canopy forests or open, young forests);<sup>14</sup> survival is possible in closed canopy forests, growth can occur in light levels as low as 5% full sunlight;<sup>11</sup> less herbivory than native congener *R. occidentalis*;<sup>17</sup> wild host of raspberry mosaic virus (aphid *Amphorophora rubi* vector) that can spread to native *Rubus* spp., such as *R. occidentalis*;<sup>6</sup> leaf spot disease (fungus *Sphaerulina tirolensis*) observed;<sup>1</sup> low genetic diversity compared to related native *Rubus*;<sup>14</sup> extended leaf phenology;<sup>3</sup> associated with lower temperatures compared to native shrubs, impacting ectotherm habitat use;<sup>4</sup> higher N requirement than many natives.<sup>2</sup>

**Similar Native Species:** American red raspberry (*R. idaeus* subsp. *strigosus*) but leaves narrower and pinnately compound, stems glaucous (not reddish or purple) with some bristles and glands.<sup>9</sup>





**Habit:** Deciduous tree reaches 30 m (98 ft) tall.<sup>2,6</sup>

**Reproduction:** Seeds primarily;<sup>6</sup> can be propagated vegetatively (but uncommon in nature) from roots<sup>16</sup> and cuttings.<sup>2,16</sup>

**Leaves:** Opposite; wider than long, broad base  $\leq$  18 cm (7 in) wide; 5-7 lobes, smooth, few teeth; petioles with milky juice most noted when base broken;<sup>4,6</sup> green to bronze with fall color tending to bright yellow.<sup>2</sup>

**Stems:** Trunk with widely spreading branches (cultivars vary, some with narrow canopies), bark relatively smooth, with shallow furrows;<sup>4</sup> twigs olive-brown; leaf scars meet to form sharp angle; leaf buds are plump, fleshy, and green to maroon.<sup>2</sup>

**Flowers:** Yellow-green, perfect; stalked, loose clusters form corymbs;<sup>4</sup> appear before<sup>2</sup> or with leaves in spring.

**Fruits/Seeds:** Samaras with 2 near horizontal (~180° divergent) wings<sup>4</sup> appear late spring through summer; seeds wind-dispersed with low fall rates, dispersal distance estimated at 50 m (164 ft);<sup>12</sup> 90-120 days cold stratification;<sup>1,2</sup> germinates best at 10 °C (50 °F);<sup>10</sup> seed bank potential.<sup>9</sup>

**Habitat:** Introduced to U.S. from Europe in 1756;<sup>18</sup> planted extensively in urban and suburban areas;<sup>2</sup> escaped to roadsides and waste places, in hedgerows and roadside thickets;<sup>4</sup> also spreading into early<sup>6</sup> and some late-successional forests;<sup>11,17,18</sup> shade tolerant;<sup>13,18</sup> withstands sandy, clayey, acidic, and calcareous soils as well as ozone and sulfur dioxide; somewhat drought resistant; USDA hardiness zones 4-7.<sup>2</sup>

## NORWAY MAPLE

*Acer platanoides* L.

ACERACEAE

*Acer platanoides*  
**NORWAY MAPLE**

**Comments:** Leaves remain on trees through late autumn; root system tends to be shallow<sup>2,13</sup>—investing more in foliage than stem and roots may reduce competitiveness in drier, open environments;<sup>13</sup> its leaf litter may increase soil fertility (high Ca, Mg, K, and N)<sup>14</sup>—this may benefit some associated native seedlings<sup>7,8</sup> and facilitate its own survival/growth;<sup>15</sup> regenerates prolifically under its own canopy<sup>11,18</sup> while this shade inhibits some associated native tree seedling survival/growth,<sup>3,5,15</sup> which may reduce overall plant diversity;<sup>11,18</sup> at least 36 cultivars; over-planted in urban areas despite issues with splitting bark and susceptibility to wilt, anthracnose, tar spot, and leaf scorch.<sup>2</sup>

**Similar Native Species:** Sugar maple (*A. saccharum*) but petioles without milky juice, leaf scars do not meet, and samara wings <180° angle.<sup>2,4,6</sup>





**Habit:** Deciduous tree, height up to 30 m (98 ft).<sup>5</sup>

**Reproduction:** By seed and vegetatively via root suckers;<sup>9</sup> able to produce many viable seeds, even trees over a century old.<sup>30</sup>

**Leaves:** Pinnately compound,  $\leq 1$  m (3 ft) long with 11-41 leaflets that have a "thumb" or tooth (sometimes more than one) at their base; each tooth has a gland.<sup>9</sup>

**Stems:** Bark gray and smooth; younger twigs covered with light brown to reddish-brown pubescence; thick, slightly enlarged tips; may grow 2 m (7 ft) in a season.<sup>5</sup>

**Flowers:** Dioecious but hermaphrodites exist;<sup>9</sup> June-July; as early as 6 weeks after germination but adult trees are the norm;<sup>7</sup> pollinated by variety of insects, including bees.<sup>4</sup>

**Fruits/Seeds:** Samara, 2 wings at  $180^\circ$  and one central seed, sets late summer;  $>300,000$  seeds per tree documented;<sup>2,30</sup> seeds may remain on tree through winter;<sup>5,15</sup> wind<sup>18</sup> and water<sup>19</sup> dispersed  $\geq 100$  m;<sup>20</sup> cold stratification not required but improves germination;<sup>12</sup> seed bank thought unlikely,<sup>18</sup> but may be up to 5 years,<sup>26</sup> found in an urban forest seed bank.<sup>17</sup>

**Habitat:** Native to China; several introductions to U.S. since 1784;<sup>8</sup> poor or rich soil, shallow to steep slopes, urban areas, open fields, woodlands, closed canopy forests; often associated with disturbed habitats;<sup>13,15</sup> tolerates several air pollutants;<sup>11,22,25</sup> USDA hardiness zones 4-8.<sup>5</sup>

## TREE OF HEAVEN

*Ailanthus altissima* (Mill.) Swingle  
[*A. glandulosa* Desf.]  
SIMAROUBACEAE

## *Ailanthus altissima* TREE OF HEAVEN

**Comments:** More dependent on clonal growth in shady conditions;<sup>18</sup> ≥5 cultivars;<sup>5</sup> drought-resistant seedlings;<sup>27</sup> preferred host for spotted lanternfly (*Lycorma delicatula*) whose fitness decreases with other host plants;<sup>28</sup> increased density of *A. altissima* associated with decreased soil microbial activity, litter detritivores (mites, springtails), and predatory beetles, but also associated with increased earthworms and dung-eating beetles;<sup>23</sup> proximity associated with increased available soil nutrients;<sup>29</sup> crushed leaves, stems, and roots smell of rancid peanut butter; allelopathic properties<sup>14</sup> but previous exposure reduces impact severity;<sup>21</sup> may inhibit nodule formation of nitrogen-fixing species;<sup>1</sup> quassinoid compounds may deter some insect herbivory<sup>10</sup> and frugivory<sup>24</sup> but seeds and tissue may be consumed by deer, mice, and voles,<sup>3,6,24</sup> and preferred by some invertebrates;<sup>3</sup> *Verticillium nonalfalfa* (verticillium wilt) is potential biocontrol.<sup>16</sup>

**Similar Native Species:** Sumacs (*Rhus glabra*, *R. typhina*) and walnuts (*Juglans nigra*, *J. cinerea*) but crushed leaves or broken stems without same odor, fruits not samaras.<sup>9</sup>





**Habit:** Deciduous tree, 15-20 m (45-60 ft) tall.<sup>6,10</sup> short-lived, possibly only 60-70 years.<sup>9,16</sup>

**Reproduction:** Seed; can propagate by root cuttings.<sup>4</sup>

**Leaves:** Opposite or whorled, simple;<sup>4,17</sup> broadly cordate-ovate, 15-25 cm (6-10 in) in size (possibly larger) with 3-5 shallow lobes; entire; underside hairy to tomentose-stellate or branched hairs;<sup>6</sup> topside pubescent;<sup>4</sup> long petioled.<sup>6</sup>

**Stems:** Opposite or whorled;<sup>6</sup> chambered pith; heavily lenticelled, pubescent when young; olive-brown.<sup>4</sup>

**Flowers:** Apr.-May, before leaves;<sup>4</sup> showy, terminal panicles of 5-7 cm (2-3 in) foxglove shaped flowers; blue or violet<sup>4,6</sup> with darker spots and yellow stripes inside; vanilla-scented; flower buds light brown, pubescent spheres that overwinter but may not survive harsh winters.<sup>4</sup>

**Fruits/Seeds:** Woody, pointed capsules, 3-4 cm (1¼-1½ in) long; seed-bearing at 8-10 years;<sup>2</sup> about 2000 seed per capsule;<sup>8</sup> large tree may produce 20 million seed/year;<sup>4</sup> seeds flattened and winged,<sup>6</sup> wind-dispersed;<sup>10</sup> require light to germinate;<sup>13</sup> no dormancy;<sup>4</sup> typically viable <2-3 years;<sup>3,25</sup> significant seed bank unlikely.<sup>7</sup>

**Habitat:** Native to western and central China; introduced to the U.S. in 1834;<sup>4,11</sup> in native range prefers alkaline soils and moist to semi-dry open forests;<sup>18</sup> found in newly disturbed<sup>8</sup> and urban areas;<sup>5</sup> tolerates high soil acidity, low soil fertility, and drought; may also colonize rocky cliffs and scoured riparian areas;<sup>15</sup> relatively cold intolerant; USDA hardiness zones 6-9.<sup>4</sup>

## PRINCESS TREE

*Paulownia tomentosa* (Thunb.) Steud.

[*P. imperialis* Siebold & Zucc.]

SCROPHULARIACEAE

## *Paulownia tomentosa*

### PRINCESS TREE

**Comments:** At least 3 cultivars;<sup>4</sup> invasive potential questioned by some;<sup>24</sup> fast growing,<sup>8</sup> possibly 2.7-3.3 m (8-10 ft) per year;<sup>4</sup> very susceptible to deer herbivory;<sup>13</sup> can re-sprout at early age, even in low light, making it tolerant of fire and deer browsing;<sup>14,22</sup> liquid smoke may reduce amount of time needed in light for germination;<sup>22</sup> endomycorrhizal associations present;<sup>1</sup> <1% occurrence on reclaimed mine lands despite preference for highly disturbed sites,<sup>12,21</sup> but successfully planted on strip mines in some areas;<sup>4</sup> one of many host plants for brown marmorated stink bug (*Halyomorpha halys*);<sup>23</sup> wood in high demand (also for related *P. elongata*) to make rice pots, bowls, spoons, coffins, air crates, furniture, and musical instruments;<sup>4,20</sup> contains several phenolic compounds with antioxidant activity.<sup>19</sup>

**Similar Native Species:** Cigar tree (*Catalpa speciosa*) but leaves not lobed; pith not chambered; flowers white or yellowish spotted with purple; fruit a long, pendulous capsule.<sup>4,6</sup>





**Habit:** Tree, 9-16 m (~30-50 ft) tall with a 6-11 m (~20-35 ft) spread; moderately conical when young, but broadens with time (at 15-20 years trees may split in half).<sup>6</sup>

**Reproduction:** By seed; self-incompatible;<sup>25</sup> clones developed via grafting, but poorly managed rootstocks may break free, flower, cross with the scion, and produce seed;<sup>5</sup> reproduction begins as early as 3 years.<sup>1,23</sup>

**Leaves:** Broadly ovate to elliptical, about 4-9 cm (~1½-3½ in) long;<sup>23</sup> glossy, dark green in summer switching to glossy shades of scarlet and purple in fall; glabrous with crenate margins;<sup>6,19</sup> petioles 2.2-4.5 cm (~7/8-1¾ in) long; narrow stipules about 2 cm (~¾ in) long.<sup>23</sup>

**Stems:** Bark shiny brown when young and grayer, slightly ridged, and furrowed when mature; stems alternate, may have ridges from the base of leaf scar; terminal buds and stem tips are white and woolly, but gradually become smooth, shiny brown.<sup>6,23</sup>

**Flowers:** About 2 cm (~¾ in) wide with 5 white petals; 5-12 flowers form a 7.6 cm (3 in) wide corymb;<sup>23</sup> malodorous in full bloom, Mar.-Apr.<sup>6,19</sup>

**Fruits/Seeds:** Fruit is small, round, 1-1.5 cm (~3/8-5/8 in) diameter; brown to yellow-brown, russet-dotted with 1-4 seeds;<sup>6,23</sup> seeds likely bird-dispersed;<sup>23</sup> cold stratification at 0-2 °C (~32-36 °F) for 60-90 days required;<sup>6</sup> germination rates and seed bank potential unknown.

**Habitat:** Native to Korea, China,<sup>6</sup> and Taiwan;<sup>23</sup> introduced into U.S. cultivation in 1908 at Harvard University's Arnold Arboretum;<sup>23</sup> common urban street tree; escaped into disturbed open areas and woodlots;<sup>23</sup> USDA hardiness zones 5-8(9).<sup>6,7</sup>

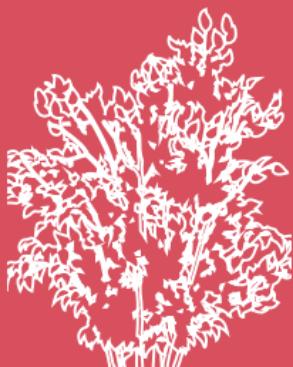
## CALLERY PEAR

*Pyrus calleryana* Decne. [*P. koehnei* C.K. Schneid.]  
ROSACEAE

## *Pyrus calleryana* CALLERY PEAR

**Comments:** Unfortunately still a valued street tree by some<sup>9,14,18</sup> because of its early-flowering<sup>3</sup> and tolerance to pollution and water stress,<sup>22</sup> even though reduced use is recommended;<sup>16</sup> has a gene (PcPCS1) associated with the synthesis of phytochelatins that detoxify heavy metals, this gene is a candidate for heavy metal bioremediation via recombinant bacteria;<sup>15</sup> at least 25 cultivars,<sup>3,4,6</sup> of which Bradford and Chanticleer may be the most common in the U.S.; wild species is thorny,<sup>7</sup> but not true of most cultivars; escapees from cultivation are often thorny;<sup>4,6,23</sup> may cross with other *Pyrus* species [e.g., *P. communis* (European) and *P. betulaefolia* (Asian)];<sup>23,24</sup> intraspecific hybridization occurs among genetically distinct cultivars, produces viable seed;<sup>3,4</sup> lack of morphological differences among cultivars increases likelihood genetically distinct cultivars will be planted near each other, leading to intraspecific hybridization;<sup>4</sup> hybrids have no inherent fitness advantage;<sup>11</sup> most cultivars are diploids ( $n=34$ ), but 4 are triploids ( $n=51$ );<sup>26</sup> some cultivars suffer from large limb or whole tree failure;<sup>8,14</sup> spraying flowers with Ethephon prevents fruit formation;<sup>6</sup> may suffer from canker and tip dieback disease caused by the bacterium *Pseudomonas syringae*;<sup>21</sup> has secondary metabolites (e.g., 3,4-dihydroxybenzyl alcohol, known as calleryanin<sup>2</sup>), which may protect it from Japanese beetles (*Popillia japonica*)<sup>13</sup> and wood-boring Asian longhorned beetles (*Anoplophora glabripennis*);<sup>17</sup> resistant to root-knot nematodes;<sup>20</sup> the Bradford cultivar was bred for resistance to fireblight, but other cultivars (e.g., Aristocrat) are prone to this disease;<sup>6</sup> *P. calleryana* var. *dimorphylla* is endangered and endemic to central Japan.<sup>12</sup>

**Similar Native Species:** Sweet crabapple (*Malus coronaria* var. *coronaria*) but leaves serrate and may have lobes, flowers pink fading to white, fruit greenish; hawthorn (*Crataegus crus-galli*) but leaves serrate, sometimes with lobes, fruit dull green to red not russet-dotted.<sup>10</sup>




# **INVASIVE PLANTS FIELD & REFERENCE GUIDE:**

**An Ecological Perspective of  
Plant Invaders of  
Forests & Woodlands**

## **Glossary of Terms**

**Citations and Photograph Information**  
(Listed by Habit and Alphabetically by  
Species Scientific Name)



# **GLOSSARY**

**Abscission:** detachment of plant parts, typically dead leaves and ripe fruit.

**Achene:** dry fruit that is usually one-seeded and closed at maturity.

**Acidic:** pH less than 7; releases protons (hydrogen ions, H<sup>+</sup>) in water.

**Actinorhizal:** symbiotic relationship of N-fixing bacteria with plant roots; less common than rhizobia.

**Acuminate:** gradually tapering to a narrow tip or sharp point.

**Adventitious:** growing from mature tissue of a different type, as in roots developing on a stem.

**Alkaline:** pH higher than 7; releases hydroxyl ions (OH<sup>-</sup>) in water.

**Allelopathic:** ability to inhibit the growth of another plant species using toxic chemical substances.

**Annual:** a plant that completes its life cycle in 1 year—germinating from seed, flowering, setting seed, and dying in one growing season.

**Anther:** enlarged terminal pollen-bearing portion of the stamen.

**Apex:** highest point, often in reference to a shoot or root.

**Aril:** fleshy, often brightly colored, tissue covering some seeds.

**Asexual:** reproduction without union of gametes [in plants, without the union of sperm in pollen and egg in the ovule]; includes vegetative and clonal growth.

**Awn:** bristle-like structure; often associated with grass flowers.

**Axillary:** the point where the leaf base or petiole meets the stem.

**Basal:** leaves form a circle at the base of the plant, forming a rosette.

**Beak:** extension of style on achene, may be straight or curved; used to differentiate some *Ranunculus* species.

**Biennial:** grows vegetatively for the first year, then flowers and dies the next.

**Bilabiate:** 2-lipped (petals of a flower); bilaterally symmetrical in shape.

**Biternate:** borne in threes twice.

**Blade:** the expanded, terminal portion of a flat plant organ, such as a leaf.

**Bract:** a modified or reduced leaf-like structure located at the base of a flower or inflorescence.

**Bulbil (Bulblet):** bulb-like structure produced at the base of a plant (underground), in the leaf axis (above ground) or in place of flowers (both above and below ground).

**C:** chemical symbol for carbon.

**C<sub>4</sub>:** photosynthetic pathway that uses CO<sub>2</sub> more efficiently (at a higher energy cost) by allowing storage of CO<sub>2</sub> in bundle sheath cells and reducing photorespiration; there is less need for gas exchange and open stomates; C<sub>4</sub> plants originated in the tropics and are well adapted to high light, high temperatures, and low moisture.

**Ca:** chemical symbol for calcium.

**Calcifuge:** plant not usually found in calcareous soil (chalk, limestone, calcium carbonate).

**Carpel:** part of the pistil containing the ovules, which produce seed once fertilized.

**Cauline:** arising from the stem located above the soil surface, not basal.

**Chasmogamous (CH) flower:** open; may outcross.

**Ciliate:** fringed with hairs.

**Cleistogamous (CL) flower:** closed; must self-fertilize.

**Clonal:** producing vegetative offshoots that can survive on their own from the same parent.

**Collar:** the leaf margin at the intersection of blade and sheath surrounding the stem.

**Comose:** having a tuft of long, soft/silky hairs, especially on a seed.

**Compound:** two or more similar parts of the same structure (such as flowers or leaflets).

**Congener:** belonging to the same genus.

**Connate:** united or fused parts.

**Constitutive:** inherent.

**Cordate:** shaped like a stylized heart, with the notch at the base.

## **GLOSSARY**

# **GLOSSARY**

**Corolla:** all the petals of a flower, collectively.

**Corona:** a set of petal-like structures or appendages from corolla base between the corolla and the stamens; floral characteristic of *Asclepiadaceae*.

**Corymb:** a flat-topped inflorescence with outer flowers on longer pedicels compared to the inner flowers; central flower is the youngest.

**Cotyledons:** leaves of the embryonic plant within a seed that first appear upon germination.

**Crenate:** toothed along the margin, the teeth rounded.

**Cu:** chemical symbol for copper.

**Culm:** the aerial stem of a grass or sedge.

**Cultivar:** a variety of a plant species occurring only under cultivation (though they may escape into the wild).

**Cuneate:** wedge shaped (or triangular), narrowing to the point of attachment.

**Cyme (Cymose):** a flat- or round-topped (or scorpioid) inflorescence where the central (or upper) flowers are older and the outer (or lower) flowers are youngest.

**Cytokinins:** class of plant hormones that promote cell division.

**Deciduous:** leaves shed each year.

**Decurrent:** wing or margin (as on a leaf petiole) continuing downward on a stem.

**Dioecious:** male and female unisexual flowers on separate plants.

**Diploid:** having two complete chromosome sets (2n).

**Discoid:** in *Asteraceae*, having disk flowers that make up all or part of the flowering head; disk flowers are tubular in shape with both male and female parts or are just functionally male; the central flowers in a sunflower head; compare to ray flowers in *Asteraceae*.

**Dormancy (for seeds):** arrested growth, requiring either further embryo development or an environmental cue for germination to occur.

**Drupe:** fleshy, one-seeded fruit with a stony inner layer.

**Ectomycorrhiza:** mycorrhizae that form a sheath around roots, unlike endomycorrhiza, which penetrate roots.

**Embolism:** filling of vascular tissue (vessels and tracheids) with air after water columns rupture (cavitation); such air pockets prevent the flow of water.

**Evergreen:** with leaves that persist for more than one growing season.

**Fecundity:** ability to reproduce; number of offspring produced.

**Fertilization:** two reproductive haploid cell nuclei (each with one chromosome set or  $1n$ ) fuse together forming a zygote (with two sets of chromosomes or  $2n$ ).

**Field capacity:** water remaining in soil after it was thoroughly saturated and allowed to drain freely.

**Flavonoid:** any group of aromatic compounds, including common pigments such as anthocyanins and flavones; antioxidant that may reduce cancer or other health risks.

**Floret:** an individual flower of definite cluster; often used to describe individual flowers of grass inflorescence.

**Florican:** flowering stem (second year) of *Rubus* spp.

**Florivory:** consumption of flowers.

**Follicle:** a dry fruit derived from a single carpel that opens at maturity along the seed-bearing suture.

**Frugivory:** consumption of fruit.

**Fruit:** the mature ovary of a plant containing seeds.

**Generalist:** an organism seeking a broad range of resources, such as in pollination of flowers or herbivory by insects.

**Genet:** the genetic individual; may be composed of several individuals (or ramets) but only one genetically distinct organism; a clone.

**Geophyte:** a perennial plant that bears its perennating buds below the soil surface.

**Germination:** beginning or resumption of growth (usually in reference to a seed).

**Glabrous:** smooth, no hairs.

**Glaucous:** waxy, bluish green; possibly removable residue imparting a whitish or bluish cast to the surface.

**Glume:** one pair of outer bracts found at the base of a grass spikelet.

**Grain:** dry, one-seeded fruit, characteristic of grasses.

**Guttation:** water expelled from leaf tissue, often along the margins, caused by root water pressure.

## **GLOSSARY**

# **GLOSSARY**

**Gynodioecious:** female flowers and perfect flowers on separate plants.

**Habit:** general look or growth form of a plant.

**Haploid:** having a single set of unpaired chromosomes.

**Hastate:** shaped like an arrow but with diverging basal lobes.

**Head (Capitulum):** short dense inflorescence of sessile or subsessile flowers crowded closely together on a peduncle, giving it the appearance of a single flower as in the composite family (e.g., daisies or dandelions).

**Herbivory:** consumption of live plant tissue.

**Hermaphrodite:** one flower having both functional sexes; same as perfect.

**Hexaploid:** having 6 complete chromosome sets (6n).

**Hybrid vigor:** enhanced or improved function or fitness resulting from cross of two different species, heterosis.

**Inducible:** capable of being activated or expressed.

**Inflorescence:** a flower cluster.

**Internode:** section of stem between two nodes.

**Involute:** leafy bracts enclosing multiple flowers, often in Asteraceae.

**K:** chemical symbol for potassium.

**Layering:** arching canes that touch ground and root at the tips, producing new ramets; a characteristic of some *Rubus* and *Rosa* species.

**Leaf scar:** scar left on a twig from a fallen leaf.

**Legume:** a fruit of the Fabaceae (pea) family composed of a single carpel but several seeds, dehiscing on both sutures.

**Lemma:** one of a pair of bracts that subtends the floret of grasses; found between the inner palea and the outer glumes.

**Lenticel:** a slightly raised area on the bark of a stem or root consisting of unsüberized (lacking suberin, lignin) cells that allow for gas exchange.

**Liana:** climbing, woody vine.

**Ligule:** flattened part of the ray-corolla in the Asteraceae or the appendage on the adaxial (inner, toward the stem or axis) side of a leaf at the junction of the blade and sheath in grasses and sedges.

**Limiting:** scarce resource, e.g., N limiting means nitrogen is scarce.

**Linalool:** a fragrant liquid alcohol.

**Lip:** one of two segments or sets of lobes of a bilabiate (two lipped) corolla or calyx.

**Lobe:** projecting segment of an organ, such as a leaf, that is too large to be called a tooth, but with adjoining sinuses (indentations between) usually extending less than half-way to the base.

**Locule:** seed-containing cavity of an ovary or fruit.

**Loment:** a legume composed of one-seeded joints.

**Lycopene:** red carotenoid pigment; an antioxidant; commonly found in tomatoes.

**Merosity (n-merous):** the number of component parts in a distinct whorl of a plant structure.

**Mericarp:** individual carpel of a schizocarp fruit.

**Mesic:** wet or moist.

**Mg:** chemical symbol for magnesium.

**Mn:** chemical symbol for manganese.

**Monocarpic:** flowering and fruiting once, then dying; also called semelparous; opposite is polycarpic or iteroparous, where organisms reproduce more than once before dying.

**Monoecious:** male and female unisexual flowers contained on one plant.

**Morphophysiological dormancy:** seeds with an underdeveloped embryo that also require particular conditions in order to induce germination (break dormancy).

**Mucronate:** tipped with a sharp, slender point.

**Mycorrhiza:** a fungus and plant root mutually beneficial association (symbiosis); mycorrhizae is plural.

**N:** chemical symbol for nitrogen (all forms).

**Native:** plant species naturally occurring in a given range, not introduced to an area by humans.

**Nectaries:** glands that secrete nectar.

**Nitrate ( $\text{NO}_3^-$ ):** one of the preferred forms of nitrogen for uptake by plants.

## **GLOSSARY**

# GLOSSARY

**Nitrification:** oxidation of ammonium ions ( $\text{NH}_4^+$ ) or ammonia ( $\text{NH}_3$ ) to nitrate ( $\text{NO}_3^-$ ) by free-living soil bacteria.

**Nitrogen fixation:** conversion of gaseous nitrogen ( $\text{N}_2$ ) into nitrogen compounds by free-living and symbiotic bacteria; more appropriately call dinitrogen fixation.

**Node:** place of attachment of leaf to stem.

**Nodule:** swellings on the roots of legumes and other plants inhabited by nitrogen-fixing bacteria.

**Oblong:** sides parallel with ends rounded; longer than broad.

**Obovate:** egg-shaped but connected at the narrow end.

**Ocrea:** stipular stem sheath above the leaf base; ocreae is plural.

**Octoploid:** having 8 complete chromosome sets (8n).

**Outcrosser:** an individual (i.e., plant) that may be fertilized by another individual of the same species (but not of the same clone), receiving new genetic material.

**Oviposit:** lay an egg or eggs (often in reference to insects).

**P:** chemical symbol for phosphorus.

**Palea:** one of a pair of bracts that subtends a grass floret inside the glumes.

**Palmette:** radiating out from a central axis.

**Panicle:** a branching inflorescence with pedicled flowers; flowers mature at the base first, then upwards.

**Papilionaceous:** butterfly-shaped; common in pea or bean flowers.

**Pappus:** typical of the Asteraceae; modified calyx composed of bristles, scales, awns, or hairs, located at each achene apex.

**Pedicel:** stalk that bears a single flower.

**Peduncle:** stalk of an inflorescence or single flower or fruit.

**Peltate:** petiole attached at or near the middle of the underside of a leaf, but not going through the leaf.

**Perennial:** living 2 years or longer.

**Perfect:** bisexual, having both male and female reproductive organs; usually referring to flowers.

**Perfoliate:** leaf surrounds the stem or petiole; stem or petiole goes through the leaf blade.

**Perianth:** petals and sepals of a flower collectively; most often used when petals and sepals look very similar.

**Pers. Obs.:** personal observation.

**Petiole:** leaf stalk.

**pH:** measure of acidity and alkalinity that is the negative logarithm of the effective hydrogen ion concentration.

**Pilose:** sparsely beset with straight spreading hairs.

**Pinnate:** arranged on opposite sides of a central axis, i.e., a column of leaflets or veins on each side.

**Pinnatifid:** more or less deeply cut in a pinnate fashion.

**Pistil:** the female organ of the flower, composed of one or more carpels, differentiated into ovary, style, and stigma.

**Plumose:** feathery, arranged in pinnate lateral bristles or dense, long pubescence.

**Pollination:** pollen transferred from an anther to a stigma (or archegonium neck of gymnosperms); may lead to fertilization.

**Polyembryonic:** seeds with multiple embryos that produce multiple seedlings.

**Polyploidy:** having three or more complete chromosome sets.

**Prickle:** sharp outgrowth from the epidermis or bark.

**Primocane:** the first-year cane of *Rubus* spp. non-flowering.

**Propagule:** seed, spores, or vegetative structures (bud, stem, root sucker) that can be used to produce another plant.

**Protandrous:** with male reproductive organs maturing prior to those of the female (pollen dispersing before female structure is receptive).

**Pubescent:** with hairs.

**Raceme:** unbranching, prolonged inflorescence producing stalked flowers, maturing from the base upward or outward.

**Rachis:** a main axis, such as that of a compound leaf or inflorescence.

## **GLOSSARY**

# GLOSSARY

**Radicle:** pertaining to the root, the first root upon germination.

**Ramet:** physiologically separate (at least potentially) individual of a genet (clone).

**Ray (Asteraceae):** ligule or ligule (lip-like extension) bearing flower; the outer flowers in a sunflower head.

**Recruitment:** the process in which seeds establish in an area and grow into new mature individuals.

**Recurved:** curved backwards.

**Reflexed:** bent backwards.

**Rhizobia:** N-fixing bacteria (*Rhizobium* and *Bradyrhizobium*) often associated with legumes.

**Rhizomatous:** with rhizomes (underground stems that can send up new shoots).

**Rootstock:** same as rhizome or an underground stem that can send up new shoots.

**Rosette:** radiating cluster of leaves at ground level.

**Samara:** closed, dry fruit with wings.

**Scabrous:** rough to the touch often due to short stiff hairs.

**Scarification:** seed coat degradation that often facilitates germination.

**Scion:** a young shoot of a plant, especially one cut for grafting or rooting.

**Schizocarp:** a fruit that splits into separate carpels at maturity.

**Sclerenchymatous:** Composed of strengthening tissue with thick-walled, lignified cells that are nearly or completely without living contents at maturity.

**Secondary growth:** cell division in the cambium and lateral meristems that results in an increase in girth rather than in height.

**Seed:** fertilized ovule with a hard coat, embryo, and sometimes endosperm (food storage for embryo).

**Seed bank:** seeds present in the soil and persisting for various time periods (longer than one season).

**Self-compatible:** individual that is capable of fertilizing itself.

**Selfed:** self-fertilized.

**Senescence:** life cycle stage from full maturity to death; can be used to describe a whole plant or parts of a plant (such as the leaves).

**Sepal:** member of the outer-most set of floral leaves, typically green or leafy-looking.

**Serrulate:** having sharp, forward pointing teeth on leaf margins.

**Sessile:** attached directly by the base, without a stalk.

**Shade intolerant:** grows well or preferentially in high light conditions and less well in low light conditions.

**Shade tolerant:** grows well or preferentially in low light conditions.

**Sheath:** leaf base surrounding the stem.

**Silique:** dry fruit, splitting with each half or valve separating from the other and leaving a central thin septum.

**Simple:** only one, or not divided.

**Spatulate:** spatula-shaped; with rounded, broad top portion and narrowing to the base.

**Specialist:** an organism seeking a specific resource (narrow range), such as in pollination of flowers, herbivory, or frugivory by insects.

**Spike:** unbranched inflorescence with sessile flowers.

**Spikelet:** a small, prolonged spike subtended by two bracts (in grasses and sedges).

**Spring ephemeral:** plants that flower and reproduce before leaf-out in early spring, taking advantage of the higher light levels, and that persist in a resting state during the summer until the following winter, when root tubers begin to elongate.

**Stamen:** male sex organ of a flower that produces pollen; composed of anther and filament.

**Stipule:** basal appendage associated with leaves, typically borne in pairs at the base of the petiole.

**Stock:** a plant part united with another plant part (the scion) of the same or a different species and supplying mostly underground parts; uniting stocks to scions is grafting.

## **GLOSSARY**

# **GLOSSARY**

**Stoloniferous:** producing stolons or elongate, creeping stems on the surface of the ground that can take root to form new plants.

**Stomates:** openings in plant epidermal tissue used for gas exchange in photosynthesis but may also be a source of water loss.

**Stratification:** seed exposure to different (often colder) temperatures to promote germination.

**Strigose:** with straight, appressed hairs that point generally in the same direction.

**Style:** slender stalk that connects stigma(s) to the ovary.

**Subcordate:** not quite heart shaped (stylized, see cordate).

**Subsessile:** not quite completely without stalks, nearly sessile.

**Successional:** directional pattern of plant community regeneration or colonization, i.e., going from bare ground or old field to young forest (early successional) to mature forest (late successional).

**Sucker:** root or stem offshoot emerging from beneath the soil to produce a new plant.

**Suture:** the line or seam where a mature fruit splits.

**Terminal:** at the top or apex of a structure (such as shoot).

**Ternate:** borne in threes.

**Tetraploid:** having 4 complete chromosome sets (4n).

**Tomentose:** covered with densely matted, woolly hairs.

**Truncate:** straight or flat-based as if cut off.

**Tuber:** in the case of lesser celandine, a tuberous root; true definition is the thickened part of a rhizome serving in food storage and possibly reproduction.

**Umbel:** a flat-topped or rounded inflorescence with flowers having equal length pedicles arising from a single point.

**Variety (var.):** in the taxonomic hierarchy, a lower than species division being either equivalent to subspecies level or less; naturally formed (not cultivated).

**Vegetative:** propagation using asexual means; potentially forming clones.

**Venation:** vein pattern found in leaves.

**Vesicular-arbuscular mycorrhizae:** an association (often mutualistic) between a fungus and a plant root in which the fungus enters the host cells and may also extend widely into the surrounding soil; fungus benefits by using plant photosynthates; plant benefits because the fungus increases uptake of nutrients, like phosphorus.

**Viability:** possibility of survival (i.e., of a seed to form a plant).

**Whorled:** ring of three or more similar structures, such as leaves, radiating from the same node or common point.

**Xeric:** dry.

**Zn:** chemical symbol for zinc.

## **GLOSSARY**



1. Chabot-Jacquety, Y. 1984. Développement et stratégie adaptive de l'*Aegopodium podagraria* L. (Ombellifères) en milieu naturel. Bulletin de la Société Botanique de France, Lettres Botaniques. 131(3): 207-221.  
<https://doi.org/10.1080/01811797.1984.10824632>.
2. Corp, N.; Pendry, B. 2013. The role of Western herbal medicine in the treatment of gout. Journal of Herbal Medicine. 3(4): 157-170.  
<https://doi.org/10.1016/j.hermed.2013.08.002>.
3. D'Hertefeldt, T.; Eneström, J.M.; Pettersson, L.B. 2014. Geographic and habitat origin influence biomass production and storage translocation in the clonal plant *Aegopodium podagraria*. PLoS One. 9(1): e85407. <https://doi.org/10.1371/journal.pone.0085407>.
4. Falińska, K. 1999. Seed bank dynamics in abandoned meadows during a 20-year period in the Białowieża National Park. Journal of Ecology. 87(3): 461-475.  
<https://doi.org/10.1046/j.1365-2745.1999.00364.x>.
5. Flint, H.L. 1985. Plants showing tolerance of urban stress. Journal of Environmental Horticulture. 3(2): 85-89. <https://doi.org/10.24266/0738-2898-3.2.85>.
6. Gatsuk, L.E.; Smirnova, O.V.; Voronitzova, L.I. [and others]. 1980. Age states of plants of various growth forms: a review. Journal of Ecology. 68(2): 675-696.  
<https://doi.org/10.2307/2259429>.
7. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
8. Grime, J.P.; Mason, G.; Curtis, A.V. [and others]. 1981. A comparative study of germination characteristics in a local flora. Journal of Ecology. 69(3): 1017-1059.  
<https://doi.org/10.2307/2259651>.
9. Janiesch, P. 1971. Zur Physiologie der Nachreife von Umbelliferen nitrophiler Säume. Flora. 160(5): 518-525. [https://doi.org/10.1016/S0367-2530\(17\)32033-9](https://doi.org/10.1016/S0367-2530(17)32033-9).
10. Klimeš, L.; Klimešová, J.; Hendriks, R.; van Groenendaal, J. 1997. Clonal plant architecture: A comparative analysis of form and function. In: de Kroon, H.; van Groenendaal, J., eds. The ecology and evolution of clonal plants. Leiden, Netherlands: Backhuys Publishers: 1-29.  
<https://www.researchgate.net/publication/309373277>.

## *Aegopodium podagraria*

### GOOTWEED

11. Nilsson, J.; D'Hertefeldt, T. 2008. Origin matters for level of resource sharing in the clonal herb *Aegopodium podagraria*. *Evolutionary Ecology*. 22: 437-448. <https://doi.org/10.1007/s10682-007-9199-z>.
12. Phartyal, S.S.; Kondo, T.; Baskin, J.M.; Baskin, C.C. 2009. Temperature requirements differ for the two stages of seed dormancy break in *Aegopodium podagraria* (Apiaceae), a species with deep complex morphophysiological dormancy. *American Journal of Botany*. 96(6): 1086-1095. <https://doi.org/10.3732/ajb.0800379>.
13. Rhoads, A.F.; Block, T.A. 2000. *The plants of Pennsylvania: an illustrated manual*. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.
14. Small, E. 1973. Photosynthetic ecology of normal and variegated *Aegopodium podagraria*. *Canadian Journal of Botany*. 51(9): 1589-1592. <http://dx.doi.org/10.1139/b73-202>.
15. Still, S.M. 1994. *Manual of herbaceous ornamental plants*. 4<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 814 p.
16. Strausbaugh, P.D.; Core, E.L. 1978. *Flora of West Virginia*. 2<sup>nd</sup> ed. Morgantown, WV: Seneca Books, Inc. 1,079 p.
17. Tutin, T.G.; Heywood, V.H.; Burges, N.A. [and others], eds. 1968. *Flora Europaea*, vol. 2: Rosaceae to Umbelliferae. Cambridge, UK: Cambridge University Press. 486 p.
18. Vandelook, F.; Bolle, N.; Van Assche, J.A. 2009. Morphological and physiological dormancy in seeds of *Aegopodium podagraria* (Apiaceae) broken successively during cold stratification. *Seed Science Research*. 19(2): 115-123. <https://doi.org/10.1017/S0960258509301075>.
19. Voss, E.G. 1985. *Michigan flora, part II: dicots (Saururaceae–Cornaceae)*. Bulletin 59. Bloomfield Hills, MI: Cranbrook Institute of Science; Ann Arbor, MI: University of Michigan Herbarium. 724 p.

### Photograph Information:

Plant [UGA5446542]; Leaf [UGA5446614]; Inflorescence [UGA5446521]: Leslie J. Mehrhoff, University of Connecticut. Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Anderson, R.C.; Kelley, T.M. 1995. Growth of garlic mustard (*Alliaria petiolata*) in native soils of different acidity. *Transactions of the Illinois State Academy of Science*. 88(3-4): 91-96. <https://www.biodiversitylibrary.org/item/262365#page/97/mode/1up>.
2. Barto, E.K.; Antunes, P.M.; Stinson, K.; [and others]. 2011. Differences in arbuscular mycorrhizal fungal communities associated with sugar maple seedlings in and outside of invaded garlic mustard forest patches. *Biological Invasions*. 13: 2755-2762. <https://doi.org/10.1007/s10530-011-9945-6>.
3. Baskin, J.M.; Baskin, C.C. 1992. Seed germination biology of the weedy biennial *Alliaria petiolata*. *Natural Areas Journal*. 12(4): 191-197. [http://www.naturalareas.org/docs/54NAJ1204\\_191-197.pdf](http://www.naturalareas.org/docs/54NAJ1204_191-197.pdf).
4. Byers, D.L.; Quinn, J.A. 1998. Demographic variation in *Alliaria petiolata* (Brassicaceae) in four contrasting habitats. *Journal of the Torrey Botanical Society*. 125(2): 138-149. <https://doi.org/10.2307/2997301>.
5. Cavers, P.B.; Heagy, M.I.; Kokron, R.F. 1979. The biology of Canadian weeds, 35. *Alliaria petiolata* (M. Bieb.) Cavara and Grande. *Canadian Journal of Plant Science*. 59(1): 217-229. <https://doi.org/10.4141/cjps79-029>.
6. Cipollini, D. 2002. Variation in the expression of chemical defenses in *Alliaria petiolata* (Brassicaceae) in the field and common garden. *American Journal of Botany*. 89(9): 1422-1430. <https://doi.org/10.3732/ajb.89.9.1422>.
7. Cipollini, D.; Gruner, B. 2007. Cyanide in the chemical arsenal of garlic mustard, *Alliaria petiolata*. *Journal of Chemical Ecology*. 33(1): 85-94. <https://doi.org/10.1007/s10886-006-9205-x>.
8. Cruden, R.W.; McClain, A.M.; Srivastava, G.P. 1996. Pollination biology and breeding system of *Alliaria petiolata* (Brassicaceae). *Bulletin of the Torrey Botanical Club*. 123(4): 273-280. <https://doi.org/10.2307/2996775>.
9. Davis, S.L.; Cipollini, D. 2014. Do mothers always know best? Oviposition mistakes and resulting larval failure of *Pieris virginensis* on *Alliaria petiolata*, a novel, toxic host. *Biological Invasions*. 16(9): 1941-1950. <https://doi.org/10.1007/s10530-013-0637-2>.

**Alliaria petiolata**  
**GARLIC MUSTARD**

10. Durka, W.; Bossdorf, O.; Prati, D.; Auge, H. 2005. Molecular evidence for multiple introductions of garlic mustard (*Alliaria petiolata*, Brassicaceae) to North America. *Molecular Ecology*. 14(6): 1697-1706. <https://doi.org/10.1111/j.1365-294x.2005.02521.x>.
11. Evans, J.A.; Lankau, R.A.; Davis, A.S. [and others]. 2016. Soil-mediated eco-evolutionary feedbacks in the invasive plant *Alliaria petiolata*. *Functional Ecology*. 30(7): 1053-1061. <https://doi.org/10.1111/1365-2435.12685>.
12. Enright, S.M.; Cipollini, D. 2007. Infection by powdery mildew *Erysiphe cruciferarum* (Erysiphaceae) strongly affects growth and fitness of *Alliaria petiolata* (Brassicaceae). *American Journal of Botany*. 94(11): 1813-1820. <https://doi.org/10.3732/ajb.94.11.1813>.
13. Enright, S.M.; Cipollini, D. 2011. Overlapping defense responses to water limitation and pathogen attack and their consequences for resistance to powdery mildew disease in garlic mustard, *Alliaria petiolata*. *Chemoecology*. 21(2): 89-98. <https://doi.org/10.1007/s00049-011-0072-8>.
14. Fernald, M.L. 1950. *Gray's Manual of Botany* 8<sup>th</sup> ed. American Book Company. New York, NY. 1,632 p.
15. Gerber, E.; Hinz, H.L.; Blossey, B. 2008. Pre-release impact assessment of two stem-boring weevils proposed as biological control agents for *Alliaria petiolata*. *Biological Control*. 45(3): 360-367. <https://doi.org/10.1016/j.biocontrol.2008.01.021>.
16. Gleason, H.A.; Cronquist, A. 1993. *Manual of vascular plants of Northeastern United States and adjacent Canada*. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
17. Guil-Guerrero, J.L.; Giménez-Martínez, J.J.; Torija-Isasa, M.E. 1999. Nutritional composition of wild edible crucifer species. *Journal of Food Biochemistry*. 23(3): 283-294. <https://doi.org/10.1111/j.1745-4514.1999.tb00020.x>.
18. Lankau, R.A.; Strauss, S.Y. 2011. Newly rare or newly common: evolutionary feedbacks through changes in population density and relative species abundance, and their management implications. *Evolutionary Applications*. 4(2): 338-353. <https://doi.org/10.1111/j.1752-4571.2010.00173.x>.

19. Lankau, R.A.; Nuzzo, V.; Spyreas, G.; Davis, A.S. 2009. Evolutionary limits ameliorate the negative impact of an invasive plant. *Proceedings of the National Academy of Sciences of the United States of America.* 106(36): 15,362-15,367.  
<https://doi.org/10.1073/pnas.0905446106>.

20. Lhotská, M. 1975. Notes on the ecology of germination of *Alliaria petiolata*. *Folia Geobotanica and Phytotaxonomica.* 10(2): 179-183.  
<https://doi.org/10.1007/BF02852858>.

21. Meekins, J.F.; McCarthy, B.C. 2002. Effect of population density on the demography of an invasive plant (*Alliaria petiolata*, Brassicaceae) population in a southeastern Ohio forest. *American Midland Naturalist.* 147(2): 256-278. [https://doi.org/10.1674/0003-0031\(2002\)147\[0256:EOPDOT\]2.0.CO;2](https://doi.org/10.1674/0003-0031(2002)147[0256:EOPDOT]2.0.CO;2).

22. Nuzzo, V.A. 1993. Current and historic distribution of garlic mustard (*Alliaria petiolata*) in Illinois. *The Michigan Botanist.* 32(1): 23-33.

23. Nuzzo, V.A.; Maerz, J.C.; Blossey, B. 2009. Earthworm invasion as the driving force behind plant invasion and community change in Northeastern North American forests. *Conservation Biology.* 23(4): 966-974. <https://doi.org/10.1111/j.1523-1739.2009.01168.x>.

24. Pardini, E.A.; Drake, J.M.; Chase, J.M.; Knight, T.M. 2009. Complex population dynamics and control of the invasive biennial *Alliaria petiolata* (garlic mustard). *Ecological Applications.* 19(2): 387-397. <https://doi.org/10.1890/08-0845.1>.

25. Porter, A. 1994. Implications of introduced garlic mustard (*Alliaria petiolata*) in the habitat of *Pieris virgininiensis* (Pieridae). *Journal of the Lepidopterists' Society.* 48(2): 171-172. [https://images.peabody.yale.edu/lepsoc/jls/1990s/1994/1994-48\(2\)171-Porter.pdf](https://images.peabody.yale.edu/lepsoc/jls/1990s/1994/1994-48(2)171-Porter.pdf).

26. Prati, D.; Bossdorf, O. 2004. Allelopathic inhibition of germination by *Alliaria petiolata* (Brassicaceae). *American Journal of Botany.* 91(2): 285-288. <https://doi.org/10.3732/ajb.91.2.285>.

27. Quackenbush, P.M.; Butler, R.A.; Emery, N.C. [and others]. 2012. *Lumbricus terrestris* prefers to consume garlic mustard (*Alliaria petiolata*) seeds. *Invasive Plant Science and Management.* 5(2): 148-154. <https://doi.org/10.1614/IPSM-D-11-00057.1>.

*Alliaria petiolata*  
GARLIC MUSTARD

28. Raghu, S.; Post, S.L. 2008. Cold stratification requirements for germination of *Alliaria petiolata*. *Invasive Plant Science and Management*. 1(3): 315-318. <https://doi.org/10.1614/IPSM-07-027.1>.

29. Redwood, M.E.; Matlack, G.R.; Huebner, C.D. 2018. Seed longevity and dormancy state suggest management strategies for garlic mustard (*Alliaria petiolata*) and Japanese stiltgrass (*Microstegium vimineum*) in deciduous forest sites. *Weed Science*. 66(2):190-198. <https://doi.org/10.1017/wsc.2017.74>.

30. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

31. Roberts, K.J.; Anderson, R.C. 2001. Effect of garlic mustard [*Alliaria petiolata* (Beib. Cavara & Grande)] extracts on plants and arbuscular mycorrhizal (AM) fungi. *American Midland Naturalist*. 146(1): 146-152. [https://doi.org/10.1674/0003-0031\(2001\)146\[0146:EGMAP\]2.0.CO;2](https://doi.org/10.1674/0003-0031(2001)146[0146:EGMAP]2.0.CO;2).

32. Rodgers, V.L.; Wolfe, B.E.; Werden, L.K.; Finzi, A.C. 2008. The invasive species *Alliaria petiolata* (garlic mustard) increases soil nutrient availability in northern hardwood-conifer forests. *Oecologia*. 157(3): 459-471. <https://doi.org/10.1007/s00442-008-1089-8>.

33. Sosnoskie, L.M.; Cardina, J. 2009. Laboratory methods for breaking dormancy in garlic mustard (*Alliaria petiolata*) seeds. *Invasive Plant Science and Management*. 2(2): 185-189. <https://doi.org/10.1614/IPSM-08-126.1>.

34. Susko, D.J.; Lovett-Doust, L. 1998. Variable patterns of seed maturation and abortion in *Alliaria petiolata* (Brassicaceae). *Canadian Journal of Botany*. 76(10): 1677-1686. <http://dx.doi.org/10.1139/b98-139>.

35. Stinson, K.A.; Campbell, S.A.; Powell, J.R. [and others]. 2006. Invasive plant suppresses the growth of native tree seedlings by disrupting belowground mutualisms. *PLoS Biology*. 4(5): e140. <https://doi.org/10.1371/journal.pbio.0040140>.

36. Welk, E.; Schubert, K.; Hoffmann, M.H. 2002. Present and potential distribution of invasive garlic mustard (*Alliaria petiolata*) in North America. *Diversity and Distributions*. 8(4): 219-233. <https://doi.org/10.1046/j.1472-4642.2002.00144.x>.

37. Wolfe, B.E.; Rodgers, V.L.; Stinson, K.A.; Pringle, A. 2008. The invasive plant *Alliaria petiolata* (garlic mustard) inhibits ectomycorrhizal fungi in its introduced range. *Journal of Ecology*. 96(4): 777-783. <https://doi.org/10.1111/j.1365-2745.2008.01389.x>.

**Photograph Information:**

Plant [UGA5451931]; Flowers [UGA5451802]; Seed [UGA5451822]: Leslie J. Mehrhoff, University of Connecticut. Basal leaves [UGA0580063]: Jil M. Swearingen, USDI National Park Service. Mature fruit [UGA1237102]: Britt Slattery, U.S. Fish and Wildlife Service. Photographs reproduced from [www.invasive.org](http://www.invasive.org).



1. Alba-Lynn, C.; Henk, S. 2010. Potential for ants and vertebrate predators to shape seed-dispersal dynamics of the invasive thistles *Cirsium arvense* and *Carduus nutans* in their introduced range (North America). *Plant Ecology*. 210(2): 291-301.  
<https://doi.org/10.1007/s11258-010-9757-2>.
2. Ang, B.N.; Kok, L.T.; Holtzman, G.I.; Wolf, D.D. 1995. Canada thistle [*Cirsium arvense* (L.) Scop.] response to density of *Cassida rubiginosa* Müller (Coleoptera: Chrysomelidae) and plant competition. *Biological Control*. 5(1): 31-38.  
<https://doi.org/10.1006/bcon.1995.1004>.
3. Baskin, C.C.; Baskin, J.M. 2001. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, CA: Academic Press. 666 p.
4. Bendall, G.M. 1975. The allelopathic activity of California thistle (*Cirsium arvense* (L.) Scop.) in Tasmania. *Weed Research*. 15(2): 77-81.  
<https://doi.org/10.1111/j.1365-3180.1975.tb01102.x>.
5. Berner, D.; Smallwood, E.; Cavin, C. [and others]. 2013. Successful establishment of epiphytotes of *Puccinia punctiformis* for biological control of *Cirsium arvense*. *Biological Control*. 67(3): 350-360.  
<https://doi.org/10.1016/j.biocontrol.2013.09.010>.
6. Bodo Slotta, T.A.; Rothhouse, J.M.; Horvath, D.P.; Foley, M.E. 2006. Genetic diversity of Canada thistle (*Cirsium arvense*) in North Dakota. *Weed Science*. 54(6): 1080-1085.  
<https://doi.org/10.1614/WS-06-038R1.1>.
7. Bostock, S.J.; Benton, R.A. 1979. The reproductive strategies of five perennial Compositae. *Journal of Ecology* 67(1): 91-107.  
<https://doi.org/10.2307/2259339>.
8. Buhler, D.D.; Hoffman, M.L. 1999. Anderson's guide to practical methods of propagating weeds and other plants. Lawrence, KS: Weed Science Society of America. 248 p.
9. Cripps, M.G.; Edwards, G.R.; Bourdôt, G.W. [and others]. 2010. Enemy release does not increase performance of *Cirsium arvense* in New Zealand. *Plant Ecology*. 209(1): 123-134.  
<https://doi.org/10.1007/s11258-010-9728-7>.

*Cirsium arvense*

CANADA THISTLE

10. Dinkins, M.F. 2005. Biological control of Canada thistle (*Cirsium arvense*) in southwestern Nebraska. Lincoln, NE: University of Nebraska. 165 p. M.S. thesis.
11. Donald, W.W. 1994. The biology of Canada thistle (*Cirsium arvense*). Review of Weed Science. 6: 77-101. <https://www.ars.usda.gov/ARSUserFiles/50701000/cswq-0193-donald.pdf>.
12. Eber, S.; Brandl, R. 2003. Regional patch dynamics of *Cirsium arvense* and possible implications for plant-animal interactions. Journal of Vegetation Science. 14(2): 259-266. <https://doi.org/10.1111/j.1654-1103.2003.tb02151.x>.
13. Edwards, G.R.; Bourdot, G.W.; Crawley, M.J. 2000. Influence of herbivory, competition and soil fertility on the abundance of *Cirsium arvense* in acid grassland. Journal of Applied Ecology. 37(2): 321-334. <https://doi.org/10.1046/j.1365-2664.2000.00495.x>.
14. Fernald, M.L. 1950. Gray's manual of botany. 8<sup>th</sup> ed. New York: American Book Company. 1,632 p.
15. Fisher, T.R. 1988. The Dicotyledoneae of Ohio: Part 3: Asteraceae. Columbus, OH: Ohio State University Press, 280 p.
16. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
17. Glinwood, R.; Ninkovic, V.; Pettersson, J.; Ahmed, E. 2004. Barley exposed to aerial allelopathy from thistles (*Cirsium* spp.) becomes less acceptable to aphids. Ecological Entomology. 29(2): 188-195. <https://doi.org/10.1111/j.0307-6946.2004.00582.x>.
18. Guggisberg, A.; Welk, E.; Sforza, R. [and others]. 2012. Invasion history of North American Canada thistle, *Cirsium arvense*. Journal of Biogeography. 39(10): 1919-1931. <https://doi.org/10.1111/j.1365-2699.2012.02746.x>.
19. Hamdoun, A.M. 1972. Regenerative capacity of root fragments of *Cirsium arvense* (L.) Scop. Weed Research. 12(2): 128-136. <https://doi.org/10.1111/j.1365-3180.1972.tb01196.x>.
20. Heimann, B.; Cussans, G.W. 1996. The importance of seeds and sexual reproduction in the population biology of *Cirsium arvense* – a literature review. Weed Research. 36(6): 493-503. <https://doi.org/10.1111/j.1365-3180.1996.tb01678.x>.

21. Hettwer, U.; Gerowitt, B. 2004. An investigation of genetic variation in *Cirsium arvense* field patches. *Weed Research*. 44(4): 289-297.  
<https://doi.org/10.1111/j.1365-3180.2004.00402.x>.

22. Kay, Q.O.N. 1985. Hermaphrodites and subhermaphrodites in a reputedly dioecious plant, *Cirsium arvense* (L.) Scop. *New Phytologist*. 100(3): 457-472.  
<https://doi.org/10.1111/j.1469-8137.1985.tb02794.x>.

23. Kluth, S.; Kruess, A.; Tscharntke, T. 2001. Interactions between the rust fungus *Puccinia punctiformis* and ectophagous and endophagous insects on creeping thistle. *Journal of Applied Ecology*. 38(3): 548-556.  
<https://doi.org/10.1046/j.1365-2664.2001.00612.x>.

24. Kluth, S.; Kruess, A.; Tscharntke, T. 2003. Influence of mechanical cutting and pathogen application on the performance and nutrient storage of *Cirsium arvense*. *Journal of Applied Ecology*. 40(2): 334-343.  
<https://doi.org/10.1046/j.1365-2664.2003.00807.x>.

25. Laubhan, M.K.; Shaffer, T.L. 2006. Seed germination of *Cirsium arvense* and *Lepidium latifolium*: implications for management of montane wetlands. *Wetlands*. 26(1): 69-78. [https://link.springer.com/article/10.1672/0277-5212\(2006\)26\[69:SGOCAA\]2.0.CO;2](https://link.springer.com/article/10.1672/0277-5212(2006)26[69:SGOCAA]2.0.CO;2).

26. LaLonde, R.G.; Roitberg, B.D. 1994. Mating system, life-history, and reproduction in Canada thistle (*Cirsium arvense*; Asteraceae). *American Journal of Botany*. 81(1): 21-28.  
<http://dx.doi.org/10.2307/2445558>.

27. Lebedev, V.P.; Zhuravleva, I.V.; Fomicheva, G.K. 2001. Specific features of the population ecology of creeping thistle, *Cirsium arvense* (L.) Scop. s. l. *Russian Journal of Ecology*. 32(2): 85-88.  
<https://doi.org/10.1023/A:1009580329977>.

28. Louda, S.M.; O'Brien C.W. 2002. Unexpected ecological effects of distributing the exotic weevil, *Larinus planus* (F.), for the biological control of Canada thistle. *Conservation Biology*. 16(3): 717-727.  
<http://dx.doi.org/10.1046/j.1523-1739.2002.00541.x>.

29. Lukashyk, P.; Berg, M.; Kopke, U. 2007. Strategies to control Canada thistle (*Cirsium arvense*) under organic farming conditions. *Renewable Agriculture and Food Systems*. 23(1): 13-18.  
<http://dx.doi.org/10.1017/S1742170507002013>.

*Cirsium arvense*

CANADA THISTLE

30. Lym, R.G.; Duncan, C.A. 2005. Canada thistle *Cirsium arvense* (L.) Scop. In: Duncan, C.L.; Clark, J.K., eds. Invasive plants of range and wildlands and their environmental, economic, and societal impacts. Lawrence, KS: Weed Science Society of America: 69-83.

31. McClay, A.S. 2002. Canada thistle. In: Van Driesche, R.; Blossey, B.; Hoddle, M. [and others], eds. Biological control of invasive plants in the Eastern United States. FHTET-2002-04. Morgantown, WV: U.S. Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team: 217-228. [https://www.fs.fed.us/foresthealth/technology/pdfs/BiocontrolsOfInvasivePlants02\\_04.pdf](https://www.fs.fed.us/foresthealth/technology/pdfs/BiocontrolsOfInvasivePlants02_04.pdf).

32. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

33. Sole, M.; Durka, W.; Eber, S.; Brandl, R. 2004. Genotypic and genetic diversity of the common weed *Cirsium arvense* (Asteraceae). International Journal of Plant Science. 165(3): 437-444. <https://doi.org/10.1086/382801>.

34. Theis, N.; Lerdau, M.; Raguso, R.A. 2007. The challenge of attracting pollinators while evading floral herbivores: patterns of fragrance emission in *Cirsium arvense* and *Cirsium repandum* (Asteraceae). International Journal of Plant Science. 168(5): 587-601. <http://dx.doi.org/10.1086/513481>.

35. Tiley, G.E.D. 2010. Biological flora of the British Isles: *Cirsium arvense* (L.) Scop. Journal of Ecology. 98(4): 938-983. <https://doi.org/10.1111/j.1365-2745.2010.01678.x>.

36. Toole, E.M.; Brown, E. 1946. Final results of the Duval buried seed experiment. Journal of Agricultural Research. 72: 201-210. <https://naldc-legacy.nal.usda.gov/catalog/IND43970084>.

37. Uva, R.H.; Neal, J.C.; DiTomaso, J.M. 1997. Weeds of the Northeast. Ithaca, NY: Cornell University Press. 408 p.

38. Wilson, R.G., Jr. 1979. Germination and seedling development of Canada thistle (*Cirsium arvense*). Weed Science. 27(2): 146-151. <https://www.doi.org/10.1017/S0043174500043708>.

39. Ziska, L.H. 2002. Influence of rising atmosphere CO<sub>2</sub> since 1900 on early growth and photosynthetic response of a noxious invasive weed, Canada thistle (*Cirsium arvense*). *Functional Plant Biology*. 29(12): 1387-1392. <https://doi.org/10.1071/fp02052>.

**Photograph Information:**

Plant [UGA5515718]: Rob Routledge, Sault College. Flowers [UGA5451403]: Leslie J. Mehrhoff, University of Connecticut. Fruit [UGA5385910]: Jan Samanek, Phytosanitary Administration. Photographs reproduced from [www.invasive.org](http://www.invasive.org).



1. Adachi, N.; Terashima, I.; Takahashi, M. 1996. Nitrogen translocation via rhizome systems in monoclonal stands of *Reynoutria japonica* in an oligotrophic desert on Mt. Fuji: field experiments. *Ecological Research*. 11(2): 175-186. <https://doi.org/10.1007/BF02347683>.
2. Aguilera, A.G.; Alpert, P.; Dukes, J.S.; Harrington, R. 2010. Impacts of the invasive plant *Fallopia japonica* (Houtt.) on plant communities and ecosystem processes. *Biological Invasions*. 12(5): 1243-1252. <https://doi.org/10.1007/s10530-009-9543-z>.
3. Andros, C.F. 2000. *Polygonum cuspidatum* (Japanese knotweed, Mexican bamboo). *American Bee Journal*. 140(11): 854.
4. Beerling, D.J.; Bailey, J.P.; Conolly, A.P. 1994. Biological flora of the British Isles: *Fallopia japonica* (Houtt.) Ronse Decraene (*Reynoutria japonica* Houtt.; *Polygonum cuspidatum* Sieb. & Zucc.). *Journal of Ecology*. 82(4): 959-979. <https://doi.org/10.2307/2261459>.
5. Clements, D.R.; Larsen, T.; Grenz, J. 2016. Knotweed management strategies in North America with the advent of widespread hybrid bohemian knotweed, regional differences, and the potential for biocontrol via the psyllid *Aphalara itadori* Shinji. *Invasive Plant Science and Management*. 9(1): 60-70. <https://doi.org/10.1614/IPSM-D-15-00047.1>.
6. Dassonville, N.; Vanderhoeven, S.; Gruber, W.; Meerts, P. 2007. Invasion by *Fallopia japonica* increases topsoil mineral nutrient concentrations. *Ecoscience*. 14(2): 230-240. [http://dx.doi.org/10.2980/1195-6860\(2007\)14\[230:IBFJIT\]2.0.CO;2](http://dx.doi.org/10.2980/1195-6860(2007)14[230:IBFJIT]2.0.CO;2).
7. De Waal, L.C. 2001. A viability study of *Fallopia japonica* stem tissue. *Weed Research*. 41(5): 447-460. <https://doi.org/10.1046/j.1365-3180.2001.00249.x>.
8. Dirr, M.A. 1998. *Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses*. 5<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 1,187 p.
9. Fernald, M.L. 1950. *Gray's manual of botany*. 8<sup>th</sup> ed. New York: American Book Company. 1,632 p.

*Fallopia japonica*  
JAPANESE KNOTWEED

10. Forman, J.; Kesseli, R.V. 2003. Sexual reproduction in the invasive species *Fallopia japonica* (Polygonaceae). *American Journal of Botany*. 90(4): 586-592.  
<https://doi.org/10.3732/ajb.90.4.586>.
11. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
12. Hirose, T.; Kitajima, K. 1986. Nitrogen uptake and plant growth I. Effect of nitrogen removal on growth of *Polygonum cuspidatum*. *Annals of Botany*. 58(4): 479-486.  
<https://doi.org/10.1093/annbot/58.4.479>.
13. Hollingsworth, M.L.; Baily, J.P. 2000. Evidence for massive clonal growth in the invasive weed *Fallopia japonica* (Japanese knotweed). *Botanical Journal of the Linnean Society*. 133(4): 463-472.  
<https://doi.org/10.1006/bojl.2000.0359>.
14. Hollingsworth, M.L.; Hollingsworth, P.M.; Jenkins, G.I. [and others]. 1998. The use of molecular markers to study patterns of genotypic diversity in some invasive alien *Fallopia* spp. (Polygonaceae). *Molecular Ecology*. 7(12): 1681-1691.  
<https://doi.org/10.1046/j.1365-294x.1998.00498.x>.
15. Kim, J.Y.; Park, C-W. 2000. Morphological and chromosomal variation in *Fallopia* section *Reynoutria* (Polygonaceae) in Korea. *Brittonia*. 52(1): 34-48.  
<http://dx.doi.org/10.2307/2666492>.
16. Maruta, E. 1976. Seedling establishment of *Polygonum cuspidatum* on Mt. Fuji. *Japanese Journal of Ecology*. 26(2): 101-105.  
[https://doi.org/10.18960/seitai.26.2\\_101](https://doi.org/10.18960/seitai.26.2_101).
17. Maruta, E. 1983. Growth and survival of current-year seedlings of *Polygonum cuspidatum* at the upper distribution limit on Mt. Fuji. *Oecologia*. 60(3): 316-320. <https://doi.org/10.1007/BF00376845>.
18. Matsuda, H.; Shimoda, H.; Morikawa, T.; Yoshikawa, M. 2001. Phytoestrogens from the roots of *Polygonum cuspidatum* (Polygonaceae): structure-requirement of hydroxyanthraquinones for estrogen activity. *Bioorganic & Medicinal Chemistry Letters*. 11(14): 1839-1842.  
[https://doi.org/10.1016/s0960-894x\(01\)00318-3](https://doi.org/10.1016/s0960-894x(01)00318-3).

19. Mizuno, N.; Takahashi, A.; Wagatsuma, T. [and others]. 2002. Chemical composition of guttation fluid and leaves of *Petasites japonicus* v. *giganteus* and *Polygonum cuspidatum* growing on ultramafic soil. *Soil Science and Plant Nutrition*. 48(3): 451-453. <https://doi.org/10.1080/00380768.2002.10409225>.

20. Parepa, M.; Fischer, M.; Krebs, C.; Bossdorf, O. 2014. Hybridization increases invasive knotweed success. *Evolutionary Applications*. 7(3): 413-420. <https://dx.doi.org/10.1111%2Feva.12139>.

21. Parepa, M.; Schaffner, U.; Bossdorf, O. 2013. Help from underground: soil biota facilitate knotweed invasion. *Ecosphere*. 4(2):1-11. <https://doi.org/10.1890/ES13-00011.1>.

22. Piola, F.; Bellvert, F.; Meiffren, G. [and others]. 2013. Invasive *Fallopia* × *bohemica* interspecific hybrids display different patterns in secondary metabolites. *Écoscience*. 20(3): 230-239. <https://doi.org/10.2980/20-3-3597>.

23. Peterson, B.; Peterson, W. 2000. Japanese knotweed, *Polygonum cuspidatum*, as a honey plant. *American Bee Journal*. 140(7): 518.

24. Price, E.A.C.; Gamble, R.; Williams, G.G.; Marshall, C. 2002. Seasonal patterns of partitioning and remobilization of  $^{14}\text{C}$  in the invasive rhizomatous perennial Japanese knotweed (*Fallopia japonica* (Houtt.) Ronse Decraene). In: Stuefer, J.F.; Erschbamer, B.; Huber, H.; Suzuki, J.-I., eds. *Ecology and Evolutionary Biology of Clonal Plants. Proceedings of Clone-2000*. Dordrecht, Netherlands: Springer: 125-140. [https://doi.org/10.1007/978-94-017-1345-0\\_7](https://doi.org/10.1007/978-94-017-1345-0_7).

25. Pysek, P.; Brock, J.H.; Bimova, K. [and others]. 2003. Vegetative regeneration in invasive *Reynoutria* (Polygonaceae) taxa: The determinant of invasibility at the genotype level. *American Journal of Botany*. 90(10): 1487-1495. <http://dx.doi.org/10.3732/ajb.90.10.1487>.

26. Rhoads, A.F.; Block, T.A. 2000. *The plants of Pennsylvania: an illustrated manual*. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

27. Richards, C.L.; Walls, R.L.; Bailey, J.P. [and others]. 2008. Plasticity in salt tolerance traits allows for invasion of novel habitat in Japanese knotweed S.L. (*Fallopia japonica* and *F. × bohemica*, Polygonaceae).

*Fallopia japonica*  
JAPANESE KNOTWEED

American Journal of Botany. 95(8): 931-942.  
<http://dx.doi.org/10.3732/ajb.2007364>.

28. Seiger, L.A.; Merchant, H.C. 1997. Mechanical control of Japanese Knotweed (*Fallopia japonica* [Houtt.]) Ronse Decraene): effects of cutting regime on rhizomatous reserves. Natural Areas Journal. 17(4): 341-345. [http://www.naturalareas.org/docs/78NAJ1704\\_341-345.pdf](http://www.naturalareas.org/docs/78NAJ1704_341-345.pdf).

29. Widayatno, W.B.; Guan, G.; Rizkiana, J. [and others]. 2014. Steam reforming of tar derived from *Fallopia japonica* stem over its own chars prepared at different conditions. Fuel. 132(6): 204-210.  
<https://doi.org/10.1016/j.fuel.2014.04.089>.

30. Winston, R.L.; Randall, C.B.; Blossey, B. [and others]. 2017. Japanese knotweed: *Fallopia japonica* (Houtt.) Ronse Decraene. In: Field guide for the biological control of weeds in Eastern North America. FHTET-2016-04. Morgantown, WV: U.S. Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team: 226-227.  
[https://www.fs.fed.us/foresthealth/technology/pdfs/FHTET-2016-04\\_Biocontrol\\_Field\\_Guide.pdf](https://www.fs.fed.us/foresthealth/technology/pdfs/FHTET-2016-04_Biocontrol_Field_Guide.pdf).

**Photograph Information:**

Leaves [UGA1237056]: Jack Ranney, University of Tennessee. Truncate leaves [UGA1539050]: James H. Miller, USDA Forest Service. Flowers with leaves [UGA1237059]: Britt Slattery, U.S. Fish and Wildlife Service. Fruit [UGA5452615]: Leslie Mehrhoff, University of Connecticut. Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Anderson, U.V. 1994. Sheep grazing as a method of controlling *Heracleum mantegazzianum*. In: de Waal, L.C.; Child, L.E.; Wade, P.M.; Brock, J.H., eds. *Ecology and management of invasive riverside plants*. Chichester, West Sussex, UK: John Wiley and Sons: 77-92.
2. Baležentienė, L.; Renčo, M. 2014. Phytotoxicity and accumulation of secondary metabolites in *Heracleum mantegazzianum* (Apiaceae). *Allelopathy Journal*. 33(2): 267-276.  
<https://www.researchgate.net/publication/260225252>.
3. Berenbaum, M. 1981. Patterns of furanocoumarin distribution and insect herbivory in the Umbelliferae: Plant chemistry and community structure. *Ecology*. 62(5): 1254-1266. <https://doi.org/10.2307/1937290>.
4. Caffrey, J.M. 1999. Phenology and long-term control of *Heracleum mantegazzianum*. *Hydrobiologia*. 415: 223-228. <https://doi.org/10.1023/A:1003854221931>.
5. Dawson, F.H.; Holland, D. 1999. The distribution in bankside habitats of three alien invasive plants in the U.K. in relation to the development of control strategies. *Hydrobiologia*. 415: 193-201.  
<https://doi.org/10.1023/A:1003872325274>.
6. Gleason, H.A.; Cronquist, A. 1993. *Manual of vascular plants of Northeastern United States and adjacent Canada*. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
7. Grace, J.; Nelson, M. 1981. Insects and their pollen loads at a hybrid *Heracleum* site. *New Phytologist*. 87(2): 413-423.  
<https://doi.org/10.1111/j.1469-8137.1981.tb03212.x>.
8. Jakubska-Busse, A.; Sliwiński, M.; Kobyłka, M. 2013. Identification of bioactive components of essential oils in *Heracleum sosnowskyi* and *Heracleum mantegazzianum* (Apiaceae). *Archives of Biological Sciences*. 65(3): 877-883.  
<http://dx.doi.org/10.2298/ABS1303877J>.
9. Jandová, K.; Dostál, P.; Cajthaml, T. 2015. Searching for *Heracleum mantegazzianum* allelopathy in vitro and in a garden experiment. *Biological Invasions*. 17(4): 987-1003.  
<https://doi.org/10.1007/s10530-014-0771-5>.

## *Heracleum mantegazzianum*

### GIANT HOGWEED

10. Jandová, K.; Dostál, P.; Cajthaml, T.; Kameník, Z. 2015. Intraspecific variability in allelopathy of *Heracleum mantegazzianum* is linked to the metabolic profile of root exudates. *Annals of Botany*. 115(5): 821-831. <https://doi.org/10.1093/aob/mcu265>.
11. Jandová, K.; Klinarová, T.; Müllerová, J. [and others]. 2014. Long-term impact of *Heracleum mantegazzianum* invasion on soil chemical and biological characteristics. *Soil Biology and Biochemistry*. 68: 270-278. <https://doi.org/10.1016/j.soilbio.2013.10.014>.
12. Page, N.A.; Wall, R.E.; Darbyshire, S.J.; Mulligan, G.A. 2006. The biology of invasive alien plants in Canada. 4. *Heracleum mantegazzianum* Sommier & Levier. *Canadian Journal of Plant Science*. 86(2): 569-589. <https://doi.org/10.4141/P05-158>.
13. Pergl, J.; Perglová, I.; Pyšek, P.; Dietz, H. 2006. Population age structure and reproductive behavior of the monocarpic perennial *Heracleum mantegazzianum* (Apiaceae) in its native and invaded distribution ranges. *American Journal of Botany*. 93(7): 1018-1028. <http://dx.doi.org/10.3732/ajb.93.7.1018>.
14. Pyšek, P. 1991. *Heracleum mantegazzianum* in the Czech Republic: dynamics of spreading from the historical perspective. *Folia Geobotanica et Phytotaxonomica*. 26(4): 439-454. <https://doi.org/10.1007/BF02912779>.
15. Pyšek, P.; Kopecký, M.; Jarošík, V.; Kotkova, P. 1998. The role of human density and climate in the spread of *Heracleum mantegazzianum* in the Central European landscape. *Diversity and Distributions*. 4(1): 9-16. <https://www.jstor.org/stable/2999808>.
16. Pyšek, P.; Krinke, L.; Jarošík, V. [and others]. 2007. Timing and extent of tissue removal affect reproduction characteristics of an invasive species *Heracleum mantegazzianum*. *Biological Invasions*. 9(3): 335-351. <https://doi.org/10.1007/s10530-006-9038-0>.
17. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.
18. Tiley, G.E.D.; Dodd, F.S.; Wade, P.M. 1996. *Heracleum mantegazzianum* Sommier & Levier. *Journal of Ecology*. 84(2): 297-319. <https://doi.org/10.2307/2261365>.

19. Walasek, M.; Grzegorczyk, A.; Malm, A.; Skalicka-Woźniak, K. 2015. Bioactivity-guided isolation of antimicrobial coumarins from *Heracleum mantegazzianum* Sommier and Levier (Apiaceae) fruits by high-performance counter-current chromatography. *Food Chemistry*. 186: 133-138. <http://dx.doi.org/10.1016/j.foodchem.2015.02.011>.

20. Willis, S.G.; Hulme, P.E. 2002. Does temperature limit the invasion of *Impatiens glandulifera* and *Heracleum mantegazzianum* in the UK? *Functional Ecology*. 16(4): 530-539. <https://doi.org/10.1046/j.1365-2435.2002.00653.x>.

**Photograph Information:**

Leaves [UGA1460060]: Donna R. Ellis, University of Connecticut. Inflorescence [UGA1151039]: Terry English, USDA APHIS PPQ. Seeds [UGA1237083]: USDA APHIS PPQ Archives. Photographs reproduced from [www.invasive.org](http://www.invasive.org).



1. Amils, R.; de la Fuente, V.; Rodriguez, N. [and others]. 2007. Composition, speciation and distribution of iron minerals in *Imperata cylindrica*. *Plant Physiology and Biochemistry*. 45(5): 335-340.  
<https://doi.org/10.1016/j.plaphy.2007.03.020>.
2. Anjum, T.; Bajwa, R.; Javaid, A. 2005. Biological control of *Parthenium* I: Effect of *Imperata cylindrica* on distribution, germination, and seedling growth of *Parthenium hysterophorus* L. *International Journal of Agriculture and Biology*. 7(3): 448-450.  
<https://www.researchgate.net/publication/258239731>.
3. Ayeni, A.O.; Duke, W.B. 1985. The influence of rhizome features on subsequent regenerative capacity in speargrass (*Imperata cylindrica* (L.) Beauv.). *Agriculture, Ecosystems and Environment*. 13(3-4): 309-317.  
[https://doi.org/10.1016/0167-8809\(85\)90018-0](https://doi.org/10.1016/0167-8809(85)90018-0).
4. Brewer, J.S.; Cralle, S.P. 2003. Phosphorus addition reduces invasion of a longleaf pine savanna (Southeastern USA) by a non-indigenous grass (*Imperata cylindrica*). *Plant Ecology*. 167: 237-245.  
<https://doi.org/10.1023/A:1023984214512>.
5. Brickell, C.; Zuk, J.D., eds. 1997. The American Horticultural Society A-Z encyclopedia of garden plants. New York: D.K. Publishing, Inc. 1,095 p.
6. Burrell, A.M.; Pepper, A.E.; Hodnett, G. [and others]. 2015. Exploring origins, invasion history and genetic diversity of *Imperata cylindrica* (L.) P. Beauv. (cogongrass) in the United States using genotyping by sequencing. *Molecular Ecology*. 24(9): 2177-2193.  
<http://dx.doi.org/10.1111/mec.13167>.
7. Capo-chichi, L.J.A.; Faircloth, W.H.; Williamson, A.G. [and others]. 2008. Invasion dynamics and genotypic diversity of cogongrass (*Imperata cylindrica*) at the point of introduction in the Southeastern United States. *Invasive Plant Science and Management*. 1(2): 133-141. <https://doi.org/10.1614/IPSM-07-007.1>.
8. Cerdeira, A.L.; Cantrell, C.L.; Dayan, F.E. [and others]. 2012. Tabanone, a new phytotoxic constituent of cogongrass (*Imperata cylindrica*). *Weed Science*. 60(2): 212-218. <https://doi.org/10.1614/WS-D-11-00160.1>.
9. Chaudhary, H.K.; Sethi, G.S.; Singh, S. [and others]. 2005. Efficient haploid induction in wheat by using pollen of *Imperata cylindrica*. *Plant Breeding*. 124(1): 96-98. <https://doi.org/10.1111/j.1439-0523.2004.01034.x>.

## *Imperata cylindrica*

### COGONGRASS

10. Chikoye, D.; Ekeleme, F. 2001. Weed flora and soil seedbanks in fields dominated by *Imperata cylindrica* in the moist savannah of West Africa. *Weed Research*. 41(6): 475-490.  
<https://doi.org/10.1046/j.1365-3180.2001.00251.x>.
11. Daneshgar, P.; Jose, S. 2009. *Imperata cylindrica*, an alien invasive grass, maintains control over nitrogen availability in an establishing pine forest. *Plant and Soil*. 320(1): 209-218.  
<http://dx.doi.org/10.1007/s11104-008-9886-8>.
12. Ding, G.; Song, Y.C.; Chen, J.R. [and others]. 2006. Chaetoglobosin U, a cytochalasan alkaloid from endophytic *Chaetomium globosum* IFB-E019. *Journal of Natural Products*. 69(2): 302-304.  
<https://doi.org/10.1021/np050515>.
13. Dozier, H.; Gaffney, J.F.; McDonald, S.K. [and others]. 1998. Cogongrass in the United States: history, ecology, impacts, and management. *Weed Technology*. 12(4): 737-743.  
<https://doi.org/10.1017/S0890037X0004464X>.
14. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
15. Hagan, D.L.; Jose, S.; Lin, C-H. 2013. Allelopathic exudates of cogongrass (*Imperata cylindrica*): implications for the performance of native pine savanna plant species in the Southeastern US. *Journal of Chemical Ecology*. 39(2): 312-322.  
<https://doi.org/10.1007/s10886-013-0241-z>.
16. Hameed, M.; Ashraf, M.; Naz, N. 2009. Anatomical adaptations to salinity in cogon grass [*Imperata cylindrica* (L.) Raeuschel] from the Salt Range, Pakistan. *Plant and Soil*. 322(1): 229-238.  
<https://doi.org/10.1007/s11104-009-9911-6>.
17. Hanafiah, M.A.K.M.; Wan Ngah, W.S.; Zakaria, H.; Ibrahim, S.C. 2007. Batch study of liquid-phase adsorption of lead ions using Lalang (*Imperata cylindrica*) leaf powder. *Journal of Biological Sciences*. 7(2): 222-230.  
<http://dx.doi.org/10.3923/jbs.2007.222.230>.

18. Hanafiah, M.A.K.M.; Zakaria, H.; Wan Ngah, W.S. 2009. Preparation, characterization, and adsorption behavior of Cu(II) ions onto alkali-treated weed (*Imperata cylindrica*) leaf powder. *Water, Air, and Soil Pollution*. 201(1): 43-53.  
<https://doi.org/10.1007/s11270-008-9926-2>.

19. Holly, D.C.; Ervin, G.N. 2006. Characterization and quantitative assessment of interspecific and intraspecific penetration of below-ground vegetation by cogongrass (*Imperata cylindrica* (L.) Beauv.) rhizomes. *Weed Biology and Management*. 6(2): 120-123.  
<https://doi.org/10.1111/j.1445-6664.2006.00198.x>.

20. Holm, L.G.; Plucknett, D.L.; Pancho, J.V.; Herberger, J.P. 1977. The world's worst weeds distribution and biology. Honolulu, HI: University Press of Hawaii. 609 p.

21. Hussain, F.; Abidi, N. 1991. Allelopathy exhibited by *Imperata cylindrica* (L.) P. Beauv. *Pakistan Journal of Botany*. 23(1): 15-25.  
[http://pakbs.org/pjbot/PDFs/23\(1\)/04.pdf](http://pakbs.org/pjbot/PDFs/23(1)/04.pdf).

22. Jose, S.; Cox, J.; Miller, D.L. [and others]. 2002. Alien plant invasions: the story of cogongrass in Southeastern forests. *Journal of Forestry*. 100(1): 41-44. <https://www.researchgate.net/publication/233512501>.

23. King, S.E.; Grace, J.B. 2000. The effects of gap size and disturbance type on invasion of wet pine savanna by cogongrass, *Imperata cylindrica* (Poaceae). *American Journal of Botany*. 87(9): 1279-1286. <http://dx.doi.org/10.2307/2656721>.

24. Koger, C.H.; Bryson, C.T. 2004. Effect of cogongrass (*Imperata cylindrica*) extracts on germination and seedling growth of selected grass and broadleaf species. *Weed Technology*. 18(2): 236-242.  
<https://doi.org/10.1614/WT-03-022R1>.

25. Li, Z.; Teng, T.T.; Alkarkhi, A.F.M. [and others]. 2013. Chemical modification of *Imperata cylindrica* leaf powder for heavy metal ion adsorption. *Water, Air, and Soil Pollution*. 224(1505): 1-14.  
<https://doi.org/10.1007/s11270-013-1505-5>.

26. Lucardi, R.D.; Wallace, L.E.; Ervin, G.N. 2014. Evaluating hybridization as a potential facilitator of successful cogongrass (*Imperata cylindrica*) invasion in Florida, USA. *Biological Invasions*. 16: 2147-2161.  
<https://doi.org/10.1007/s10530-014-0654-9>.

## *Imperata cylindrica*

### COGONGRASS

27. MacDonald, G.E. 2004. Cogongrass (*Imperata cylindrica*)—biology, ecology, and management. *Critical Reviews in Plant Sciences*. 23(5): 367-380. <https://doi.org/10.1080/07352680490505114>.
28. Mak-Mensah, E.E.; Komlaga, G.; Terlabi, E.O. 2010. Antihypertensive action of ethanolic extract of *Imperata cylindrica* leaves in animal models. *Journal of Medicinal Plants Research*. 4(14): 1486-1491. <https://academicjournals.org/journal/JMPR/article-abstract/7F0E1D517464>.
29. Otsamo, A. 2002. Early effects of four fast-growing tree species and their planting density on ground vegetation in *Imperata* grasslands. *New Forests*. 23: 1-17. <https://doi.org/10.1023/A:1015655923484>.
30. Paul, R.; Elmore, C.D. 1984. Weeds and the C<sup>4</sup> syndrome. *Weeds Today*. 15(1): 3-4.
31. Paz-Alberto, A.M.; Sigua, G.C.; Baui, B.G.; Prudente, J.A. 2007. Phytoextraction of lead-contaminated soil using vetivergrass (*Vetiveria zizanioides* L.), cogongrass (*Imperata cylindrica* L.) and carabaograss (*Paspalum conjugatum* L.). *Environmental Science Pollution Research*. 14(7): 498-504. <http://dx.doi.org/10.1065/espr2007.05.415>.
32. Peet, N.B.; Watkinson, A.R.; Bell, D.J.; Sharma, U.R. 1999. The conservation management of *Imperata cylindrica* grassland in Nepal with fire and cutting: an experimental approach. *Journal of Applied Ecology*. 36(3): 374-387. <https://doi.org/10.1046/j.1365-2664.1999.00405.x>.
33. Saxena, K.G.; Ramakrishnan, P.S. 1983. Growth and allocation strategies of some perennial weeds of slash and burn agriculture (Jhum) in northeastern India. *Canadian Journal of Botany*. 61(4): 1300-1306. <http://dx.doi.org/10.1139/b83-137>.
34. Smittle, D., ed. 2002. Care-free plants: a guide to growing the 200 hardiest low-maintenance, long-living beauties. Pleasantville, NY: Reader's Digest Association, Inc. 352 p.
35. Still, S.M. 1994. Manual of herbaceous ornamental plants. 4<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 814 p.
36. Tamang, B.; Rockwood, D.L.; Langholtz, M. [and others]. 2008. Fast-growing trees for cogongrass (*Imperata cylindrica*) suppression and enhanced

colonization of understory plant species on a phosphate-mine clay setting area. *Ecological Engineering*. 32(4): 329-336.  
<http://dx.doi.org/10.1016/j.ecoleng.2007.12.008>.

37. Tominaga, T. 2003. Growth of seedlings and plants from rhizome pieces of cogongrass (*Imperata cylindrica* (L.) Beauv.). *Weed Biology and Management*. 3(3): 193-195.  
<https://doi.org/10.1046/j.1445-6664.2003.00097.x>.

38. U.S. Department of Agriculture (USDA), Animal and Plant Health Inspection Service (APHIS), Plant Protection and Quarantine (PPQ). 2018. Weed risk assessment for *Imperata cylindrica* (L.) P. Beauv. (Poaceae) – Cogongrass. Raleigh, NC: USDA, APHIS, PPQ. 31 p. [https://www.aphis.usda.gov/plant\\_health/plant\\_pest\\_info/weeds/downloads/wra/imperata-cylindrica.pdf](https://www.aphis.usda.gov/plant_health/plant_pest_info/weeds/downloads/wra/imperata-cylindrica.pdf). (28 June 2021).

39. Xuan, T.D.; Toyama, T.; Fukuta, M. [and others]. 2009. Chemical interaction in the invasiveness of cogongrass (*Imperata cylindrica* (L.) Beauv.). *Journal of Agricultural and Food Chemistry*. 57(20): 9448-9453. <https://doi.org/10.1021/jf902310j>.

40. Yoon, J.S.; Lee, M.K.; Sung, S.H.; Kim, Y.C. 2006. Neuroprotective 2-(2-phenylethyl) chromones of *Imperata cylindrica*. *Journal of Natural Products*. 69(2): 290-291. <https://doi.org/10.1021/np0503808>.

#### Photograph Information:

Plants [UGA1115007]: Charles T. Bryson, USDA Agricultural Research Service. Leaf blade [UGA3970061]: L.M. Marsh, Florida Department of Agriculture and Consumer Services. Leaf sheath and ligule [UGA1380056]: Chris Evans, University of Georgia. Young inflorescence [UGA1148078]: Charles T. Bryson, USDA Agricultural Research Service. Mature inflorescence with seed dispersing [UGA1391445]: John D. Byrd, Mississippi State University. Photographs reproduced from [www.invasive.org](http://www.invasive.org).



1. Ansley, W. 1960. The influence of time and frequency of cutting on persistence, forage yield, seed yield, and seed type of sericea lespedeza. Auburn, AL: Auburn University. 63 p. M.S. thesis.
2. Beaton, L.L.; Van Zandt, P.A.; Esselman, E.J.; Knight, T.M. 2011. Comparison of the herbivore defense and competitive ability of ancestral and modern genotypes of an invasive plant, *Lespedeza cuneata*. *Oikos*. 120(9): 1413-1419.  
<http://dx.doi.org/10.1111/j.1600-0706.2011.18893.x>.
3. Brandon, A.L.; Gibson, D.J.; Middleton, B.A. 2004. Mechanisms for dominance in an early successional old field by the invasive non-native *Lespedeza cuneata* (Dum. Cours.) G. Don. *Biological Invasions*. 6(4): 483-493. <https://doi.org/10.1023/B:BINV.0000041561.71407.f5>.
4. Busby, R.R.; Rodriguez, G.; Gebbert, D.L.; Yannarell, A.C. 2016. Native *Lespedeza* species harbor greater non-rhizobial bacterial diversity in root nodules compared to the coexisting invader, *L. cuneata*. *Plant and Soil*. 401(1): 427-436.  
<https://doi.org/10.1007/s11104-015-2763-3>.
5. Carter, C.T.; Ungar, I.A. 2002. Aboveground vegetation, seed bank and soil analysis of a 31-year-old forest restoration on coal mine spoil in southeastern Ohio. *The American Midland Naturalist*. 147(1): 44-59.  
[https://doi.org/10.1674/0003-0031\(2002\)147\[0044:AVS BAS\]2.0.CO;2](https://doi.org/10.1674/0003-0031(2002)147[0044:AVS BAS]2.0.CO;2).
6. Clewell, A.F. 1966. Natural history, cytology and isolating mechanisms of the native American *Lespedezas*. Bulletin 6. Tallahassee, FL: Tall Timbers Research Station. (p.10-12). 39 p.
7. Cope, W.A. 1966. Growth rate and yield in sericea lespedeza in relation to seed size and outcrossing. *Crop Science*. 6(6): 566-568. <https://doi.org/10.2135/cropsci1966.0011183X000600060020x>.
8. Coykendall, K.E.; Houseman, G.R. 2014. *Lespedeza cuneata* invasion alters soils facilitating its own growth. *Biological Invasions*. 16(8): 1735-1742.  
<https://doi.org/10.1007/s10530-013-0623-8>.

*Lespedeza cuneata*  
CHINESE LESPEDEZA

9. Donnelly, E.D. 1955. The effects of outcrossing on forage and seed yields in sericea lespedeza, *L. cuneata*. *Agronomy Journal*. 47(10): 466-467. <https://doi.org/10.2134/agronj1955.00021962004700100005x>.
10. Dudley, D.M.; Fick, W.H. 2003. Effects of sericea lespedeza residues on selected tallgrass prairie grasses. *Transactions of the Kansas Academy of Science*. 106(3): 166-170. [http://dx.doi.org/10.1660/0022-8443\(2003\)106\[0166:EOSLRO\]2.0.CO;2](http://dx.doi.org/10.1660/0022-8443(2003)106[0166:EOSLRO]2.0.CO;2).
11. Eddy, T.A.; Moore, C.M. 1998. Effects of sericea lespedeza (*Lespedeza cuneata* (Dumont) G. Don) invasion on oak savannas in Kansas. *Transactions of the Wisconsin Academy of Sciences, Arts and Letters*. 86: 57-62. <https://digicoll.library.wisc.edu/cgi-bin/WI/WI-idx?type=article&did=WI.WT1998.TAEddy&id=WI.WT1998&isize=text>.
12. Gleason, H.A.; Cronquist, A. 1993. *Manual of vascular plants of Northeastern United States and adjacent Canada*. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
13. Gu, C.T.; Wang, E.T.; Sui, X.H. [and others]. 2007. Diversity and geographical distribution of rhizobia associated with *Lespedeza* spp. in temperate and subtropical regions of China. *Archives of Microbiology*. 188(4): 355-365. <https://doi.org/10.1007/s00203-007-0256-3>.
14. Guernsey, W.J. 1970. Sericea lespedeza: its use and management. *Farmers' Bulletin* No. 2245. Washington, DC: U.S. Department of Agriculture. 29 p.
15. Guenther, E.M.; Roberts, J.M. 2004. Soil nitrogen influences early root allocation of *Lespedeza cuneata*. *Tillers*. 5: 21-23. <https://ojs.grinnell.edu/index.php/tillers/article/view/42>.
16. Houseman, G.R.; Foster, B.L.; Brassil, C.E. 2014. Propagule pressure-invasibility relationships: testing the influence of soil fertility and disturbance with *Lespedeza cuneata*. *Oecologia*. 174(2): 511-520. <https://doi.org/10.1007/s00442-013-2781-x>.
17. Houseman, G.R.; Mahoney, A.K. 2015. Intraspecific seed interactions alter seedling emergence of *Lespedeza cuneata* under field conditions. *Population Ecology*. 57(3): 539-544. <https://doi.org/10.1007/s10144-015-0495-0>.

18. Hu, L.; Busby, R.R.; Gebhart, D.L.; Yannarell, A.C. 2014. Invasive *Lespedeza cuneata* and native *Lespedeza virginica* experience asymmetrical benefits from rhizobial symbionts. *Plant and Soil.* 384: 315-325. <https://doi.org/10.1007/s11104-014-2213-7>.

19. Ibewiro, B.; Sanginga, N.; Vanlauwe, B.; Merckx, R. 2000. Influence of phytoparasitic nematodes on symbiotic N<sub>2</sub> fixation in tropical herbaceous legume cover crops. *Biology and Fertility of Soils.* 31: 254-260. <https://doi.org/10.1007/s003740050654>.

20. Kalburtji, K.L.; Mosjidis, J.A.; Mamolos, A.P. 2001. Allelopathic plants. 2. *Lespedeza cuneata*. *Allelopathy Journal.* 8(1): 41-49.

21. Langdale, G.W.; Giddens, J.E. 1967. Phytotoxic phenolic compounds in sericea lespedeza residues. *Agronomy Journal.* 59(6): 581-584. <https://doi.org/10.2134/agronj1967.00021962005900060028x>.

22. Lemmon, J.; Fick, W.H.; Alexander, J.A. [and others]. 2017. Intensive late-season sheep grazing following early-season steer grazing is an effective biological control mechanism for sericea lespedeza (*Lespedeza cuneata*) in the Kansas Flint Hills. In: *Proceedings, Western Section, American Society of Animal Science*; Fargo, ND; June 2017. Champaign, IL: American Society of Animal Science. 68: 124-129.

23. Mantz, G.K.; Villalba, J.J.; Provenza, F.D. 2013. Can cattle be used to control sericea lespedeza? *Rangelands.* 35(4): 6-12. <https://doi.org/10.2111/RANGELANDS-D-13-00006.1>.

24. Ohlenbusch, P.D.; Bidwell, T.; Fick, W.H. [and others]. 2007. Sericea lespedeza: history, characteristics and identification. MF-2408. Manhattan, KS: Kansas State University, Agricultural Experiment Station and Cooperative Extension Service. 6 p. <https://bookstore.ksre.ksu.edu/pubs/MF2408.pdf>.

25. Rhoads, A.F.; Block, T.A. 2000. *The plants of Pennsylvania: an illustrated manual.* Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

26. Schutzenhofer, M.R. 2007. The effect of herbivory on the mating system of congeneric native and exotic *lespedeza* species. *International Journal of Plant Sciences.* 168(7): 1021-1026. <https://doi.org/10.1086/518941>.

***Lespedeza cuneata*  
CHINESE LESPEDEZA**

27. Schutzenhofer, M.R.; Valone, T.J.; Knight, T.M. 2009. Herbivory and population dynamics of invasive and native *Lespedeza*. *Oecologia*. 161(1): 57-66. <http://dx.doi.org/10.1007/s00442-009-1354-5>.

28. Wade, G.L. 1989. Grass competition and establishment of native species from forest soil seed banks. *Landscape and Urban Planning*. 17(2): 135-149. [https://doi.org/10.1016/0169-2046\(89\)90022-4](https://doi.org/10.1016/0169-2046(89)90022-4).

29. Wong, B.M.; Houseman, G.R.; Hinman, S.E.; Foster, B.L. 2012. Targeting vulnerable life-stages of sericea lespedeza (*Lespedeza cuneata*) with prescribed burns. *Invasive Plant Science and Management*. 5(4): 487-493. <http://dx.doi.org/10.1614/IPSM-D-12-00002.1>.

30. Woods, T.M.; Hartnett, D.C.; Ferguson, C.J. 2009. High propagule production and reproductive fitness homeostasis contribute to the invasiveness of *Lespedeza cuneata* (Fabaceae). *Biological Invasions*. 11(8): 1913-1927. <https://doi.org/10.1007/s10530-008-9369-0>.

31. Woods, T.M.; Jonas, J.L.; Ferguson, C.J. 2012. The invasive *Lespedeza cuneata* attracts more insect pollinators than native congeners in tallgrass prairie with variable impacts. *Biological Invasions*. 14(5): 1045-1059. <https://doi.org/10.1007/s10530-011-0138-0>.

**Photograph Information:**

Plant [UGA1268008]: Chris Evans, University of Illinois, Leaf [UGA5453315]: Leslie J. Mehrhoff, University of Connecticut. Flowers [UGA1237107]: Dan Tenaglia, Missouriplants.com. Seeds [UGA5307079]: Steve Hurst, USDA NRCS PLANTS Database. Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Barden, L.S. 1987. Invasion of *Microstegium vimineum* (Poaceae), an exotic, annual, shade-tolerant, C<sub>4</sub> grass, into a North Carolina floodplain. *American Midland Naturalist*. 118(1): 40-45.  
<https://doi.org/10.2307/2425626>.
2. Barden, L.S. 1996. The linear relation between stand yield and integrated light in a shade-adapted annual grass. *Bulletin of the Torrey Botanical Club*. 123(2): 122-125.  
<https://doi.org/10.2307/2996069>.
3. Barden, L.S. 1996. A comparison of growth efficiency of plants on the east and west sides of a forest canopy gap. *Bulletin of the Torrey Botanical Club*. 123(3): 240-242.  
<https://doi.org/10.2307/2996799>.
4. Bruckart, W.L.; Eskandari, F.M.; Michael, J.L.; Smallwood, E.L. 2017. Differential Aggressiveness of *Bipolaris microstegii* and *B. drechsleri* on Japanese Stiltgrass. *Invasive Plant Science and Management*. 10(1): 44-52.  
<https://doi.org/10.1017/inp.2017.8>.
5. Cheplick, G.P. 2005. Biomass partitioning and reproductive allocation in the invasive, cleistogamous grass *Microstegium vimineum*: influence of the light environment. *Journal of the Torrey Botanical Society*. 132(2): 214-224.  
[http://dx.doi.org/10.3159/1095-5674\(2005\)132\[214:BP ARAI\]2.0.CO;2](http://dx.doi.org/10.3159/1095-5674(2005)132[214:BP ARAI]2.0.CO;2).
6. Culley, T.M.; Huebner, C.D.; Novy, A. 2016. Regional and local genetic variation in Japanese stiltgrass (*Microstegium vimineum*). *Invasive Plant Science and Management*. 9(2): 96-111.  
<https://doi.org/10.1614/IPSM-D-15-00055.1>.
7. Cunard, C.E.; Lankau, R.A. 2017. Declining survival across invasion history for *Microstegium vimineum*. *PLoS ONE*. 12(8): 1-15.  
<https://doi.org/10.1371/journal.pone.0183107>.
8. Ehrenfeld, J.G.; Kourtev, P.; Huang, W. 2001. Changes in soil functions following invasions of exotic understory plants in deciduous forests. *Ecological Applications*. 11(5): 1287-1300.  
<https://doi.org/10.2307/3060920>.

*Microstegium vimineum*

JAPANESE STILTGRASS

9. Fairbrothers, D.E.; Gray, J.R. 1972. *Microstegium vimineum* (Trin.) A. Camus (Graminae) in the United States. Bulletin of the Torrey Botanical Club. 99(2): 97-100. <https://doi.org/10.2307/2484205>.
10. Fernald, M.L. 1950. Gray's manual of botany. 8<sup>th</sup> ed. New York: American Book Company. 1,632 p.
11. Flory, S.L.; Bauer, J.; Phillips, R.P.; Clay, K. 2017. Effects of a non-native grass invasion decline over time. Journal of Ecology. 105(6): 1475-1484. <https://doi.org/10.1111/1365-2745.12850>.
12. Gibson, D.J.; Spyreas, G.; Benedict, J. 2002. Life history of *Microstegium vimineum* (Poaceae), an invasive grass in southern Illinois. Journal of the Torrey Botanical Society. 129(3): 207-219. <https://doi.org/10.2307/3088771>.
13. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
14. Horton, J.L.; Neufeld, H.S. 1998. Photosynthetic responses of *Microstegium vimineum* (Trin.) A. Camus, a shade-tolerant, C<sub>4</sub> grass, to variable light environments. Oecologia. 114(1): 11-19. <https://doi.org/10.1007/s004420050414>.
15. Hoshikawa, K. 1969. The underground organs of the seedlings and the systematics of Gramineae. Botanical Gazette. 130(3): 192-203. <https://www.jstor.org/stable/2474145>.
16. Huebner, C.D. 2010. Establishment of an invasive grass in closed-canopy deciduous forests across local and regional environmental gradients. Biological Invasions. 12(7): 2069-2080. <http://dx.doi.org/10.1007/s10530-009-9609-y>.
17. Huebner, C.D. 2011. Seed mass, viability, and germination of Japanese stiltgrass (*Microstegium vimineum*) under variable light and moisture conditions. Invasive Plant Science and Management. 4(3): 274-283. <http://dx.doi.org/10.1614/IPSM-D-10-00090.1>.
18. Hunt, D.M.; Zaremba, R.E. 1992. The northeastward spread of *Microstegium vimineum* (Poaceae) into New York and adjacent states. Rhodora. 94(878): 167-170. <https://www.jstor.org/stable/23312888>.

19. Kleczewski, N.M.; Flory, S.L. 2010. Leaf blight disease on the invasive grass *Microstegium vimineum* caused by a *Bipolaris* sp. Plant Disease. 94(7): 807-811.  
<https://doi.org/10.1094/PDIS-94-7-0807>.

20. Kourtev, P.S.; Ehrenfeld J.G.; Huang, W.Z. 1998. Effects of exotic plant species on soil properties in hardwood forests of New Jersey. Water, Air, and Soil Pollution. 105: 493-501.  
<https://doi.org/10.1023/A:1005037105499>.

21. Kourtev, P.S.; Huang, W.Z.; Ehrenfeld, J.G. 1999. Differences in earthworm densities and nitrogen dynamics in soils under exotic and native plant species. Biological Invasions. 1: 237-245.  
<https://doi.org/10.1023/A:1010048909563>.

22. Lee, M.R.; Tu, C.; Chen, X.; Hu, S. 2014. Arbuscular mycorrhizal fungi enhance P uptake and alter plant morphology in the invasive plant *Microstegium vimineum*. Biological Invasions. 16(5):1083-1093.  
<http://dx.doi.org/10.1007/s10530-013-0562-4>.

23. Mehrhoff, L. 2000. Perennial *Microstegium vimineum* (Poaceae): An Apparent Misidentification? Journal of the Torrey Botanical Society. 127(3): 251-254.  
<https://www.jstor.org/stable/3088762>.

24. Redman, D.E. 1995. Distribution and habitat types for Nepal *Microstegium* [*Microstegium vimineum* (Trin.) Camus] in Maryland and the District of Columbia. Castanea. 60(3): 270-275.  
<https://www.jstor.org/stable/4033777>.

25. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

26. Stewart, R.R. 1945. The grasses of northwest India. Brittonia. 5(4): 404-468.  
<https://doi.org/10.2307/2804891>.

27. Tanaka, H. 1975. Pollination of some Gramineae (2). Journal of Japanese Botany. 50: 25-31.

28. Winter, K.; Schmitt, M.R.; Edwards, G.E. 1982. *Microstegium vimineum*, a shade adapted C<sub>4</sub> grass. Plant Science Letters. 24(3): 311-318.  
[https://doi.org/10.1016/0304-4211\(82\)90027-X](https://doi.org/10.1016/0304-4211(82)90027-X).

29. Zampella, R.A.; Laidig, K.J. 1997. Effect of watershed disturbance on Pinelands stream vegetation. Journal of the Torrey Botanical Society. 124(1): 52-66.  
<https://doi.org/10.2307/2996598>.

***Microstegium vimineum***

**JAPANESE STILTGRASS**

30. Ziska, L.H.; Tomecek, M.B.; Valerio, M.; Thompson, J.P. 2015. Evidence for recent evolution in an invasive species, *Microstegium vimineum*, Japanese stiltgrass. *Weed Research*. 55(3): 260-267.  
<https://doi.org/10.1111/wre.12138>.

**Photograph Information:**

Plant [UGA5483689]; Leaf [UGA5483594]; Leaf sheath with hairless node [UGA5483715]; Florets with awns [UGA5483949]: Leslie J. Mehrhoff, University of Connecticut. Flowering/fruiting head [UGA5474657]: Chris Evans, University of Illinois. Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Baskin, C.C.; Baskin, J.M. 2001. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, CA: Academic Press. 666 p.
2. Beal, W.J. 1896. Grasses of North America. New York: Henry Holt and Co. 706 p.
3. Boersma, N.; Bonin, C.; Clark, L.G.; Heaton, E. 2015. Identifying *Miscanthus* in Iowa. CROP 3079. Iowa State University, Extension and Outreach. 2 p. <https://store.extension.iastate.edu/product/14440>.
4. Bradshaw, J.D.; Prasifka, J.R.; Steffey, K.L.; Gray, M.E. 2010. First report of field populations of two potential aphid pests of the bioenergy crop *Miscanthus x giganteus*. Florida Entomologist. 93(1): 135-137. <https://doi.org/10.1653/024.093.0123>.
5. Britton, N.; Brown, A. 1913. An illustrated flora of the Northern United States, Canada and the British possessions from Newfoundland to the parallel of the southern boundary of Virginia, and from the Atlantic Ocean westward to the 102d meridian, Vol. 1. New York: Charles Scribner's Sons. 680 p.
6. Chae, W.B.; Hong, S.J.; Gifford, J.M. [and others]. 2013. Synthetic polyploid production of *Miscanthus sacchariflorus*, *Miscanthus sinensis*, and *Miscanthus x giganteus*. GCB Bioenergy. 5(3): 338-350. <https://doi.org/10.1111/j.1757-1707.2012.01206.x>.
7. Christian, D.G.; Yates, N.E.; Riche, A.B. 2005. Establishing *Miscanthus sinensis* from seed using conventional sowing methods. Industrial Crops and Products. 21(1): 109-111. <https://doi.org/10.1016/j.indcrop.2004.01.004>.
8. Chiang, Y.C., Schall, B.A.; Chou, C.H. [and others]. 2003. Contrasting selection modes at the ADH1 locus in outcrossing *Miscanthus sinensis* vs. inbreeding *Miscanthus condensatus* (Poaceae). American Journal of Botany. 90(4): 561-570. <https://doi.org/10.3732/ajb.90.4.561>.
9. Clifton-Brown, J.C.; Lewandowski, I.; Andersson, B. [and others]. 2001. Performance of 15 *Miscanthus* genotypes at five sites in Europe. Agronomy Journal. 93(5): 1013-1019. <https://doi.org/10.2134/agronj2001.9351013x>.
10. Clifton-Brown, J.C.; Lewandowski, I.; Bangerth, F.; Jones, M.B. 2002. Comparative responses to water stress in stay-green, rapid- and slow-senescing

## ***Miscanthus sinensis***

EULALIA

*Miscanthus sinensis*

EULALIA

genotypes of the biomass crop, *Miscanthus*. New Phytologist. 154(2): 335-345.  
<https://doi.org/10.1046/j.1469-8137.2002.00381.x>.

11. Dougherty, R.F.; Quinn, L.D.; Endres, A.B. [and others]. 2014. Natural history survey of the ornamental grass *Miscanthus sinensis* in the introduced range. Invasive Plant Science and Management. 7(1): 113-120.  
<https://doi.org/10.1614/IPSM-D-13-00037.1>.

12. Farrell, A.D.; Clifton-Brown, J.C.; Lewandowski, I.; Jones, M.B. 2006. Genotype variation in cold tolerance influences the yield of *Miscanthus*. Annals of Applied Biology. 149(3): 337-345.  
<https://doi.org/10.1111/j.1744-7348.2006.00099.x>.

13. Favretti, R.J.; Favretti, J.P. 1997. Landscapes and gardens for historic buildings: a handbook for reproducing and creating authentic landscape settings. 2<sup>nd</sup> ed. Walnut Creek, CA: AltaMira Press. 212 p.

14. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.

15. Gordon, D.R.; Tancig, K.J.; Onderdonk, D.A.; Gantz, C.A. 2011. Assessing the invasive potential of biofuel species proposed for Florida and the United States using the Australian Weed Risk Assessment. Biomass and Bioenergy. 35(1): 74-79.  
<https://doi.org/10.1016/j.biombioe.2010.08.029>.

16. Greef, J.M.; Deuter, M. 1993. Syntaxonomy of *Miscanthus × giganteus*. Angewandte Botanik. 67(3-4): 87-90.

17. Hager, H.A.; Rupert, R.; Quinn, L.D.; Newman, J.A. 2015. Escaped *Miscanthus sacchariflorus* reduces the richness and diversity of vegetation and the soil seed bank. Biological Invasions. 17(6): 1833-1847.  
<http://dx.doi.org/10.1007/s10530-014-0839-2>.

18. Hartmann, H.T.; Kester, D.E.; Davies, F.T., Jr.; Geneve, R.I. 2002. Hartmann and Kester's plant propagation: principles and practices. 7<sup>th</sup> ed. Upper Saddle River, NJ: Prentice Hall. 880 p.

19. Hayashi, I. 1979. The autecology of some grassland species. In: Numata, M., ed. Ecology of grasslands and bamboolands in the world. Jena, Germany: VEB Gustav Fischer Verlag: 141-152.

20. Hirayoshi, I.; Nishikawa, K.; Kato, R. 1955. Cytogenetical studies on forage plants. (IV) Self-incompatibility in *Miscanthus*. Japanese Journal of Breeding. 5(3): 167-170. [Japanese, English abstract]. <https://doi.org/10.1270/jsbbs1951.5.167>.

21. Horton, J.L.; Fortner, R.; Goklany, M. 2010. Photosynthetic characteristics of the C<sub>4</sub> invasive exotic grass *Miscanthus sinensis* Andersson growing along gradients of light intensity in the Southeastern United States. Castanea. 75(1): 52-66. <https://doi.org/10.2179/08-040.1>.

22. Iwaki, H.; Midorikawa, B. 1968. Principles for estimating root production in herbaceous perennials. In: Ghilarov, M.S.; Kovda, V.A.; Novichkova-Ivanova, L.N. [and others], eds. Methods of productivity studies in root systems and rhizosphere organisms: Proceedings, International symposium of the Soviet National Committee for International Biological Sciences; August 28 to September 12, 1968. Leningrad, USSR: Nauka: 72-78.

23. Ma, X.-F.; Jensen, E.; Alexandrov, N. [and others]. 2012. High resolution genetic mapping by genome sequencing reveals genome duplication and tetraploid genetic structure of the diploid *Miscanthus sinensis*. PLoS ONE. 7(3): e33821. <https://doi.org/10.1371/journal.pone.0033821>.

24. Mann, J.J.; Kyser, G.B.; Barney, J.N.; DiTomaso, J.M. 2012. Assessment of aboveground and belowground vegetative fragments as propagules in the bioenergy crops *Arundo donax* and *Miscanthus × giganteus*. BioEnergy Research. 6(2): 688-698. <http://dx.doi.org/10.1007/s12155-012-9286-z>.

25. Matlaga, D.P.; Quinn, L.D.; Davis, A.S.; Stewart, J.R. 2012. Light response of native and introduced *Miscanthus sinensis* seedlings. Invasive Plant Science and Management. 5(3): 363-374. <https://doi.org/10.1614/IPSM-D-11-00056.1>.

26. Matlaga, D.P.; Davis, A.S. 2013. Minimizing invasive potential of *Miscanthus × giganteus* grown for bioenergy: identifying demographic thresholds for population growth and spread. Journal of Applied Ecology. 50(2): 479-487. <https://doi.org/10.1111/1365-2664.12057>.

*Miscanthus sinensis*

EULALIA

27. Matumura, M.; Hakumura, Y.; Saijoh, Y. 1986. Ecological aspects of *Miscanthus sinensis* var. *condensatus*, *M. sacchariflorus*, and their 3x, 4x-hybrids, 2: growth behavior of the current year's rhizomes. Research Bulletin of the Faculty of Agriculture, Gifu University. 51: 347-362. [Japanese, English abstract].

28. Matumura, M.; Yukimura, T. 1975. Fundamental studies on artificial propagation by seeding useful wild grasses in Japan. VI. Germination behaviors of three native species of genus *Miscanthus*; *M. sacchariflorus*, *M. sinensis*, and *M. tinctorius*. Research Bulletin of the Faculty of Agriculture, Gifu University. 38: 339-349. [Japanese, English abstract].

29. Nishiwaki, A.; Mizuguti, A.; Kuwabara, S. [and others]. 2011. Discovery of natural *Miscanthus* (Poaceae) triploid plants in sympatric populations of *Miscanthus sacchariflorus* and *Miscanthus sinensis* in southern Japan. American Journal of Botany. 98(1): 154-159.  
<https://doi.org/10.3732/ajb.1000258>.

30. Ohtsuka, T.; Sakura, T.; Ohsawa, M. 1993. Early herbaceous succession along a topographical gradient on forest clear-felling sites in mountainous terrain, central Japan. Ecological Research. 8(3): 329-340. <https://doi.org/10.1007/BF02347192>.

31. Quinn, L.D.; Allen, D.J.; Stewart, J.R. 2010. Invasiveness potential of *Miscanthus sinensis*: implications for bioenergy production in the United States. Global Change Biology Bioenergy. 2(6): 310-320.  
<https://doi.org/10.1111/j.1757-1707.2010.01062.x>.

32. Quinn, L.D.; Matlaga, D.P.; Stewart, J.R.; Davis, A.S. 2011. Empirical evidence of long-distance dispersal in *Miscanthus sinensis* and *Miscanthus × giganteus*. Invasive Plant Science and Management. 4(1): 142-150. <https://doi.org/10.1614/IPSM-D-10-00067.1>.

33. Quinn, L.D.; Culley, T.M.; Stewart, J.R. 2012a. Genetic comparison of introduced and native populations of *Miscanthus sinensis* (Poaceae), a potential bioenergy crop. Japanese Journal of Grassland Science. 58(2): 101-111.  
<http://dx.doi.org/10.1111/j.1744-697X.2012.00248.x>.

34. Quinn, L.D.; Stewart, J.R.; Yamada, T. [and others]. 2012b. Environmental tolerances of *Miscanthus sinensis* in invasive and native populations. *Bioenergy Research*. 5(1): 139-148.  
<http://dx.doi.org/10.1007/s12155-011-9163-1>.

35. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

36. Rounsville, T.J.; Touchell, D.H.; Ranney, T.G. 2011. Fertility and reproductive pathways in diploid and triploid *Miscanthus sinensis*. *HortScience*. 46(10): 1353-1357.  
<http://dx.doi.org/10.21273/HORTSCI.46.10.1353>.

37. Saito, K.; Nishiwaki, A.; Sugawara, K. 2000. DNA extraction from arbuscular mycorrhizal roots of *Miscanthus sinensis* Anderss. Collected in the native grassland. *Japanese Journal of Grassland Science*. 46(2): 182-184. [https://doi.org/10.14941/grass.46.182\\_1](https://doi.org/10.14941/grass.46.182_1).

38. Schwarz, H.; Liebhard, P.; Ehrendorfer, K.; Ruckenbauer, P. 1994. The effect of fertilization on yield and quality of *Miscanthus sinensis* 'Giganteus'. *Industrial Crops and Products*. 2(3): 153-159.  
[https://doi.org/10.1016/0926-6690\(94\)90031-0](https://doi.org/10.1016/0926-6690(94)90031-0).

39. Stewart, J.R.; Toma, Y.; Fernandez, F.G. [and others]. 2009. The ecology and agronomy of *Miscanthus sinensis*, a species important to bioenergy crop development in its native range in Japan: a review. *Global Change Biology Bioenergy*. 1(2): 126-153.  
<http://dx.doi.org/10.1111/j.1757-1707.2009.01010.x>.

40. Still, S.M. 1994. Manual of herbaceous ornamental plants. 4<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 814 p.

41. Sugimoto, Y. 2002. Forest-pastoral systems: studies in Morotuka Village, Miyazaki Prefecture. *Journal of Japanese Society of Grassland Science*. 47: 644-651. [Japanese].

42. Tsuyuzaki, S.; Hase, A. 2005. Plant community dynamics on the volcano Mount Koma, northern Japan, after the 1996 eruption. *Folia Geobotanica*. 40(4): 319-330.  
<http://dx.doi.org/10.1007/BF02804282>.

43. Watnanabe, N.; Nishiwaki, A.; Sugawara, K. 2001. Seed banks in pastures: special reference to a persistent soil seed bank of invading species *Carex*

*Miscanthus sinensis*

EULALIA

*albata* Boott. Japanese Journal of Grassland Science. 47(4): 337-343.  
<http://dx.doi.org/10.14941/grass.47.337>.

44. Wilson, C.R. 2011. Ornamental grasses. Fact Sheet No. 7.232. Fort Collins, CO: Colorado State University Extension. 5 p.  
<https://extension.colostate.edu/topic-areas/yard-garden/ornamental-grasses-7-232/>.

45. Yano, N.; Kayama, R. 1975. Underground. In: Numata, M., ed. Ecological Studies in Japanese Grasslands with Special Reference to the IBP Area. Japan International Biological Program Synthesis Series. Tokyo: Tokyo University Press: 147-160. Vol. 13.

**Photograph Information:**

Flowering plant [UGA5456379]; Variegated leaves [UGA5456366]: Leslie J. Mehrhoff, University of Connecticut. Flowers [2307210]: James Miller, USDA Forest Service. Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Baskin, C.C.; Baskin, J.M. 2001. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, CA: Academic Press. 666 p.
2. Benson, L. 1940. The North American subdivisions of *Ranunculus*. American Journal of Botany. 27(9): 799-807. <https://doi.org/10.2307/2436909>.
3. Benson, L. 1942. The North American *Ranunculi*-V. Bulletin of the Torrey Botanical Club. 69(5): 373-386. <https://doi.org/10.2307/2481744>.
4. Carter, J.R.L. 1996. Bright as a buttercup. The Garden. London: Royal Horticultural Society. 121(2): 90-95.
5. Cipollini, K.A.; Schradin, K.D. 2011. Guilty in the court of public opinion: testing presumptive impacts and allelopathic potential of *Ranunculus ficaria*. American Midland Naturalist. 166(1): 63-74. <https://doi.org/10.1674/0003-0031-166.1.63>.
6. Cipollini, K.A.; Titus, K.; Wagner, C. 2012. Allelopathic effects of invasive species (*Alliaria petiolata*, *Lonicera maackii*, *Ranunculus ficaria*) in the Midwestern United States. Allelopathy Journal. 29(1): 63-76. <https://www.researchgate.net/publication/288437945>.
7. Fernald, M.L. 1950. Gray's manual of botany. 8<sup>th</sup> ed. New York: American Book Company. 1,632 p.
8. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
9. Harper, P.J. 1999. The greater pleasures of lesser celandines: choice selections abound among these early-blooming buttercup relatives. Horticulture. April: 32-34.
10. Heinken, T.; Hanspach, H.; Schaumann, F. 2001. How important is endozoochorous seed dispersal by wild mammals in Central European forests? Hercynia. 34(2): 237-259. [German; English abstract].
11. U.S. Department of Agriculture; U.S. Department of Interior; Smithsonian Institution; [and others]. 2020. Integrated Taxonomic Information System (ITIS) [Database]. <http://www.itis.gov/>. (31 March 2020).
12. Jung, F.; Bohning-Gaese, K.; Prinzing, A. 2008. Life history variation across a riverine landscape: intermediate levels of disturbance favor sexual reproduction in the ant-dispersed herb *Ranunculus ficaria*. Ecography. 31(6): 776-786. <https://doi.org/10.1111/j.0906-7590.2008.05385.x>.

## ***Ranunculus ficaria***

### **LESSER CELANDINE**

*Ranunculus ficaria*  
LESSER CELANDINE

13. Marsden-Jones, E.M. 1935. *Ranunculus ficaria* Linn.: life history and pollination. Journal of the Linnean Society of London, Botany. 50(333): 39-55. <https://doi.org/10.1111/j.1095-8339.1935.tb01501.x>.
14. Masters, J.A.; Emery, S.M. 2015. The showy invasive plant *Ranunculus ficaria* facilitates pollinator activity, pollen deposition, but not always seed production for two native spring ephemeral plants. Biological Invasions. 17(8): 2329-2337. <https://doi.org/10.1007/s10530-015-0878-3>.
15. Neite, E.; Pahlke, U. 1991. Air pollution-induced changes in the ground vegetation in oak/hornbeam forests in Westphalian Bight in the last 30 years. Forst und Holz. 46(10): 286-289. [German; English abstract].
16. Post, A.R.; Krings, A.; Wall, W.A.; Neal, J.C. 2009. Introduced lesser celandine (*Ranunculus ficaria*, Ranunculaceae) and its putative subspecies in the United States: a morphometric analysis. Journal of the Botanical Research Institute of Texas. 3(1): 193-209. <https://www.jstor.org/stable/41972152>.
17. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.
18. Salisbury, E.J. 1916. The emergence of the aerial organs in woodland plants. Journal of Ecology. 4(3/4): 121-128. <https://doi.org/10.2307/2255627>.
19. Sell, P.D. 1994. *Ranunculus ficaria* L. sensu lato. Watsonia. 20: 41-50.
20. Strahl, S.; Ehret, V.; Dahm, H.H.; Maier, K.P. 1998. Nekrotisierende Hepatitis nach Einnahme pflanzlicher Heilmittel. Deutsche Medizinische Wochenschrift. 123(47): 1410-1414. [German, English abstract]. <https://doi.org/10.1055/S-2007-1024196>.
21. Taylor, K.; Markham, B. 1978. Biological flora of the British Isles: *Ranunculus ficaria* (*Ficaria verna* Huds.; *F. ranunculoides* Moench). Journal of Ecology. 66(3): 1011-1031. <https://doi.org/10.2307/2259310>.
22. Tomczyk, M.; Gudej, J.; Sochacki, M. 2002. Flavonoids from *Ficaria verna* Huds. Zeitschrift für Naturforschung C Journal of Biosciences. 57(5-6): 440-444. <https://doi.org/10.1515/znc-2002-5-606>.
23. Tomczyk, M.; Gudej, J. 2003. Pilewort (*Ficaria verna* Huds.)—early-spring medicinal plant. Herba Polonica. 49(3/4): 444-450. [Polish; English abstract].

24. Tyler, G. 2001. Relationships between climate and flowering of eight herbs in a Swedish deciduous forest. *Annals of Botany*. 87(5): 623-630.  
<https://doi.org/10.1006/anbo.2001.1383>.

**Photograph Information:**

Leaves [UGA5510133]; Population [UGA5455709]; Flowers [UGA2308044]; Bulbils [UGA5455811]; Tubers [UGA5510149]: Leslie J. Mehrhoff, University of Connecticut. Photographs reproduced from [www.invasive.org](http://www.invasive.org).



1. Banga, M.; Slaa, E.J.; Blom, C.W.P.M.; Voesenek, L.A.C.J. 1996. Ethylene biosynthesis and accumulation under drained and submerged conditions (a comparative study of two *Rumex* species). *Plant Physiology*. 112(1): 229-237.  
<https://doi.org/10.1104/pp.112.1.229>.
2. Baskin, C.C.; Baskin, J.M. 2001. *Seeds: ecology, biogeography, and evolution of dormancy and germination*. San Diego, CA: Academic Press. 666 p.
3. Berg, M.P.; Verhoef, H.A. 1998. Ecological characteristics of a nitrogen-saturated coniferous forest in the Netherlands. *Biology and Fertility of Soils*. 26(4): 258-267.  
<https://doi.org/10.1007/s003740050377>.
4. Buhler, D.D.; Hoffman, M.L. 1999. *Anderson's guide to practical methods of propagating weeds and other plants*. Lawrence, KS: Weed Science Society of America. 248 p.
5. Čulafić, L.J.; Tešević, V.; Doković, D.; Kozomara, B. 1992. Endogenous cytokinins in flowers of males and females clones of *Rumex acetosella* L. In: Kaminek, M.; Mok, D.W.S.; Zazimalova, E., eds. *Proceedings of the International Symposium on Physiology and Biochemistry of Cytokinins in Plants*, Liblice, Czechoslovakia; September 10-14, 1990. The Hague, The Netherlands: SPB Academic Publishing: 381-383.
6. de Pietri, D.E. 1995. The spatial configuration of vegetation as an indicator of landscape degradation due to livestock enterprises in Argentina. *Journal of Applied Ecology*. 32(4): 857-865.  
<https://doi.org/10.2307/2404825>.
7. Escarré, J.; Houssard, C. 1991. Changes in sex ratio in experimental populations of *Rumex acetosella*. *Journal of Ecology*. 79(2): 379-387.  
<https://doi.org/10.2307/2260720>.
8. Escarré, J.; Houssard, C.; Thompson, J.D. 1994. An experimental study of the role of seedling density and neighbor relatedness in the persistence of *Rumex acetosella* in an old-field succession. *Canadian Journal of Botany*. 72(9): 1273-1281.  
<https://doi.org/10.1139/B94-155>.
9. Escarré, J.; Thompson, J.D. 1991. The effects of successional habitat variation and time of flowering on seed production in *Rumex acetosella*. *Journal of*

## ***Rumex acetosella***

**SHEEP SORREL**

*Rumex acetosella*

SHEEP SORREL

Ecology. 79(4): 1099-1112.  
<https://doi.org/10.2307/2261101>.

10. Fan, J.; Harris, W. 1996. Effects of soil fertility level and cutting frequency on interference among *Hieracium pilosella*, *H. praealtum*, *Rumex acetosella*, and *Festuca novae-zelandiae*. New Zealand Journal of Agricultural Research. 39(1): 1-32.  
<https://doi.org/10.1080/00288233.1996.9513159>.

11. Farris, M.A. 1984. Leaf size and shape variation associated with drought stress in *Rumex acetosella* L. (Polygonaceae). American Midland Naturalist. 111(2): 358-363. <https://doi.org/10.2307/2425330>.

12. Farris, M.A.; Schaal, B.A. 1983. Morphological and genetic variation in ecologically central and marginal populations of *Rumex acetosella* L. (Polygonaceae). American Journal of Botany. 70(2): 246-255.  
<https://doi.org/10.2307/2443270>.

13. Fernald, M.L. 1950. Gray's manual of botany. 8<sup>th</sup> ed. New York: American Book Company. 1,632 p.

14. Fransson, A-M.; van Aarle, I.M.; Olsson, P.A.; Tyler, G. 2003. *Plantago lanceolata* L. and *Rumex acetosella* L. differ in their utilization of soil phosphorus fractions. Plant and Soil. 248(1-2): 285-295.  
<https://doi.org/10.1023/A:1022331409517>.

15. Frenot, Y.; Chown, S.L.; Whinam, J. [and others]. 2005. Biological invasions in the Antarctic: extent, impacts and implications. Biological Review. 80(1): 45-72. <https://doi.org/10.1017/s1464793104006542>.

16. Fujitaka, T.; Sakai, S. 2007. Sexual dimorphism in clonal growth forms and ramet distribution patterns in *Rumex acetosella* (Polygonaceae). Ecological Research. 22(2): 248-254.  
<https://doi.org/10.1007/s11284-006-0020-1>.

17. Ghermandi, L. 1997. Seasonal patterns in the seed bank of a grassland in north-western Patagonia. Journal of Arid Environments. 35(2): 215-224.  
<https://doi.org/10.1006/jare.1996.0168>.

18. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.

19. Gobbi, M.; Puntieri, J.; Calvelo, S. 1995. Post fire recovery and invasion by alien plant species in a South American woodland-steppe ecotone. In: Pysek,

P.; Prach, K.; Rejmanek, M.; Wade, M., eds. Plant invasions—general aspects and special problems. Amsterdam, The Netherlands: SPB Academic Publishing: 105-115.

20. Granström, A. 1987. Seed viability of fourteen species during five years of storage in a forest soil. *Journal of Ecology*. 75(2): 321-331.  
<https://doi.org/10.2307/2260421>.

21. Hintikka, V. 1990. Germination ecology and survival strategy of *Rumex acetosella* (Polygonaceae) on drought-exposed rock outcrops in South Finland. *Annales Botanici Fennici*. 27(3): 205-215.

22. Houssard, C.; Escarré, J.; Vartanian, N. 1992. Water stress effects on successional populations of the dioecious herb, *Rumex acetosella* L. *New Phytologist*. 120(4): 551-559.  
<https://doi.org/10.1111/j.1469-8137.1992.tb01805.x>.

23. Houssard, C.; Escarré, J. 1995. Variation and covariation among life-history traits in *Rumex acetosella* from a successional old-field gradient. *Oecologia*. 102(1): 70-80.  
<https://doi.org/10.1007/bf00333312>.

24. Isbilir, S.S.; Sagiroglu, A. 2013. Total phenolic content, antiradical and antioxidant activities of wild and cultivated *Rumex acetosella* L. extracts. *Biological Agriculture and Horticulture*. 29(4): 219-226.  
<https://doi.org/10.1080/01448765.2013.827992>.

25. Jelić, G.; Culafić, L.; Kapor, S.; Nešković, M. 1988. Endogenous cytokinins in the vegetative and reproductive phases of development in the dioecious plant *Rumex acetosella* L. *Plant Growth Regulation*. 7(1): 53-58. <https://doi.org/10.1007/BF00121690>.

26. Kennedy, K.J.; Boyd, N.S.; Nams, V.O. 2010. Hexazinone and fertilizer impacts on sheep sorrel (*Rumex acetosella*) in wild blueberry. *Weed Science*. 58(3): 317-322.  
<https://doi.org/10.1614/WS-D-09-00081.1>.

27. Klimeš, L.; J. Klimešová, J. 1999. Root sprouting in *Rumex acetosella* under different nutrient levels. *Plant Ecology*. 141(1): 33-39.  
<https://doi.org/10.1023/A:1009877923773>.

28. Korpelainen, H. 1992. Patterns of phenotypic variation and sexual size dimorphism in *Rumex*

*Rumex acetosella*

SHEEP SORREL

acetosa and *R. acetosella*. *Botanica Helvetica*. 102(1): 109-120.

29. Korpelainen, H. 1992. Patterns of resource allocation in male and female plants of *Rumex acetosa* and *R. acetosella*. *Oecologia*. 89(1): 133-139.  
<https://doi.org/10.1007/bf00319025>.

30. Korpelainen, H. 1995. Geographical differentiation in allozyme variation in *Rumex acetosella* subspecies *acetosella* and *angiocarpus*. *Weed Research*. 35(5): 413-419.  
<https://doi.org/10.1111/j.1365-3180.1995.tb01637.x>.

31. Li, Z.; Boyd, N.; McLean, N.; Rutherford, K. 2014. Hexazinone resistance in red sorrel (*Rumex acetosella*). *Weed Science*. 62(3): 532-537.  
<https://doi.org/10.1614/WS-D-13-00173.1>.

32. Löve, A. 1983. The taxonomy of *Acetosella*. *Botanica Helvetica*. 93(2): 145-168.

33. Lovett Doust, L.; Lovett Doust, J. 1987. Leaf demography and clonal growth in female and male *Rumex acetosella*. *Ecology*. 68(6): 2056-2058.  
<https://doi.org/10.2307/1939896>.

34. Madsen, S.B. 1962. Germination of buried and dry stored seeds. III. 19341960. *Proceedings of the International Seed Test Association*. 27(4): 920-928.

35. Mancini, M.V. 1993. Recent pollen spectra from forest and steppe of south Argentina: a comparison with vegetation and climatic data. *Review of Palaeobotany and Palynology*. 77(1-2): 129-142.  
[https://doi.org/10.1016/0034-6667\(93\)90061-X](https://doi.org/10.1016/0034-6667(93)90061-X).

36. Medve, R.J. 1984. The mycorrhizae of pioneer species in disturbed ecosystems in western Pennsylvania. *American Journal of Botany*. 71(6): 787-794.  
<https://doi.org/10.1002/j.1537-2197.1984.tb14143.x>.

37. Newsham, K.K.; Watkinson, A.R.; West, H.M.; Fitter, A.H. 1995. Symbiotic fungi determine plant community structure: changes in a lichen-rich community induced by fungicide application. *Functional Ecology*. 9(3): 442-447.  
<https://doi.org/10.2307/2390007>.

38. Putwain, P.D.; Harper, J.L. 1972. Studies in the dynamics of plant populations: V. Mechanisms governing the sex ratio in *Rumex acetosa* and *Rumex acetosella*. *Journal of Ecology*. 60(1): 113-129.  
<https://doi.org/10.2307/2258045>.

39. Räsänen, S. 2001. Tracing and interpreting fine-scale human impact in northern Fennoscandia with the aid of modern pollen analogues. *Vegetation History Archaeobotany*. 10(4): 211-218.  
<https://doi.org/10.1007/PL00006932>.

40. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

41. Roberts, H.A.; Boddrell, J.E. 1985. Seed survival and seasonal emergence in some species of *Geranium*, *Ranunculus* and *Rumex*. *Annals of Applied Biology*. 107(2): 231-238.  
<https://doi.org/10.1111/j.1744-7348.1985.tb01566.x>.

42. Schöttelndreier, M.; Maj Norddahl, M.; Ström, L.; Falkengren-Grerup, U. 2001. Organic acid exudation by wild herbs in response to elevated Al concentrations. *Annals of Botany*. 87(6): 769-775.  
<https://doi.org/10.1006/anbo.2001.1405>.

43. Skeffington, R.A.; Bradshaw, A.D. 1980. Nitrogen fixation by plants grown on reclaimed china clay waste. *Journal of Applied Ecology*. 17(2): 469-477.  
<https://doi.org/10.2307/2402342>.

44. Stopps, G.J.; White, S.N.; Clements, D.R.; Upadhyaya, M.K. 2011. The biology of Canadian weeds. 149. *Rumex acetosella* L. *Canadian Journal of Plant Science*. 91(6): 1037-1052.  
<https://doi.org/10.4141/cjps2011-042>.

45. Ström, L.; Olsson, T.; Tyler, G. 1994. Differences between calcifuge and acidifuge plants in root exudation of low-molecular organic acids. *Plant and Soil*. 167(2): 239-245.  
<https://doi.org/10.1007/BF00007950>.

46. Tamayo, C.; Richardson, M.A.; Diamond, S.; Skoda, I. 2000. The chemistry and biological activity of herbs used in Flor-Essence™ herbal tonic and Essiac™. *Phytotherapy Research*. 14(1): 1-14.  
[https://doi.org/10.1002/\(sici\)1099-1573\(200002\)14:1%3C1::aid-ptr580%3E3.0.co;2-o](https://doi.org/10.1002/(sici)1099-1573(200002)14:1%3C1::aid-ptr580%3E3.0.co;2-o).

47. Tolonen, M. 1983. Pollen evidence of vegetational change following early European settlement of Monhegan Island, Maine, Northeastern USA. *Boreas*. 12(3): 201-215.  
<https://doi.org/10.1111/j.1502-3885.1983.tb00313.x>.

## *Rumex acetosella*

### SHEEP SORREL

48. Tyler, G. 1996. Cover distributions of vascular plants in relation to soil chemistry and soil depth in granite rock ecosystem. *Vegetatio*. 127(2): 215-223. <https://doi.org/10.1007/BF00044642>.

49. Tyler, G.; Ström, L. 1995. Differing organic acid exudation pattern explains calcifuge and acidifuge behaviour of plants. *Annals of Botany*. 75(1): 75-78. [https://doi.org/10.1016/S0305-7364\(05\)80011-3](https://doi.org/10.1016/S0305-7364(05)80011-3).

50. Uva, R.H.; Neal, J.C.; DiTomaso, J.M. 1997. *Weeds of the Northeast*. Ithaca, NY: Cornell University Press. 408 p.

51. Van Assche, J.; Van Nerum, D.; Darius, P. 2002. The comparative germination ecology of nine *Rumex* species. *Plant Ecology*. 159(2): 131-142. <https://doi.org/10.1023/A:1015553905110>.

52. Vézina, L.; Bouchard, C.J. 1989. Compétition de la petite oseille (*Rumex acetosella*) avec le fraisier cultivé (*Fragaria ananassa* DCNE). *Naturaliste Canadien Quebec*. 116(4): 237-244. [French, English abstract].

53. Wenzel, W.W.; Bunkowski, M.; Puschenreiter, M.; Horak, O. 2003. Rhizosphere characteristics of indigenously growing nickel hyperaccumulator and excluder plants on serpentine soil. *Environmental Pollution*. 123(1): 131-138. [https://doi.org/10.1016/s0269-7491\(02\)00341-x](https://doi.org/10.1016/s0269-7491(02)00341-x).

54. White, S.N.; Boyd, N.S.; Van Acker, R.C. 2014. Demography of *Rumex acetosella* in lowbush blueberry (*Vaccinium angustifolium*). *Weed Research*. 54(4): 377-387. <https://doi.org/10.1111/wre.12092>.

55. Zimmerman, J.K.; Lechowicz, M.J. 1982. Responses to moisture stress in male and female plants of *Rumex acetosella* L. (Polygonaceae). *Oecologia (Berl)*. 53(3): 305-309. <https://doi.org/10.1007/bf00389005>.

### Photograph Information:

Plant [UGA5390761]: Forest and Kim Starr, Starr Environmental. Leaf [UGA1550214]: John Cardina, The Ohio State University. Flowers [UGA5449785]: Leslie J. Mehrhoff, University of Connecticut. Fruit [UGA5459906]: D. Walters and C. Southwick, Table Grape Weed Disseminule ID, USDA APHIS PPQ. Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Brickell, C.; Zuk, J.D., eds. 1997. The American Horticultural Society A-Z encyclopedia of garden plants. New York: D.K. Publishing, Inc. 1,095 p.
2. Dirr, M.A. 1998. Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses. 5<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 1,187 p.
3. Dirr, M.A. 2003. Dirr's hardy trees and shrubs: an illustrated encyclopedia. Portland, OR: Timber Press. 493 p.
4. Garibaldi, A.; Bertetti, D.; Gullino, M.L. 2004. First report of powdery mildew (*Oidium* sp.) on *Akebia quinata* in Italy. *Plant Disease*. 88(6): 682. <https://doi.org/10.1094/PDIS.2004.88.6.682D>.
5. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
6. Kawagoe, T.; Suzuki, N. 2002. Floral sexual dimorphism and flower choice by pollinators in a nectarless monoecious vine *Akebia quinata* (Lardizabalaceae). *Ecological Research*. 17(3): 295-303. <https://doi.org/10.1046/j.1440-1703.2002.00489.x>.
7. Kawagoe, T.; Suzuki, N. 2003. Flower-size dimorphism avoids geitonogamous pollination in a nectarless monoecious plant *Akebia quinata*. *International Journal of Plant Science*. 164(6): 893-897. <https://doi.org/10.1086/378659>.
8. Kawagoe, T.; Suzuki, N. 2005. Self-pollen on a stigma interferes with outcrossed seed production in a self-incompatible monoecious plant, *Akebia quinata* (Lardizabalaceae). *Functional Ecology*. 19(1): 49-54. <https://doi.org/10.1111/j.0269-8463.2005.00950.x>.
9. Kitaoka, F.; Kakiuchi, N.; Long, C. [and others]. 2009. Molecular characterization of *Akebia* plants and the derived traditional herbal medicine. *Biological Pharmacology Bulletin*. 32(4): 665-670. <https://doi.org/10.1248/bpb.32.665>.
10. Koo, H.J.; Sung, Y.Y.; Kim, H.K. 2013. Inhibitory effects of *Akebia quinata* ethanol extract on TNF- $\alpha$ -mediated vascular inflammation in human aortic smooth muscle cells. *Molecular Medicine Reports*. 7(2): 379-383. <https://doi.org/10.3892/mmr.2012.1193>.

***Akebia quinata*  
CHOCOLATE VINE**

11. Lee, E.-K.; Kwon, W.-Y.; Lee, J.-W. [and others]. 2014. Quality characteristics and antioxidant activity of vinegar supplemented added with *Akebia quinata* fruit during fermentation. Korean Society of Food Science and Nutrition Journal. 43(8): 1217-1227.
12. Li, B.; Li, Y.; Cai, Q. [and others]. 2016. Development of chloroplast genomic resources for *Akebia quinata* (Lardizabalaceae). Conservation Genetic Resources. 8(4): 447-449.  
<https://doi.org/10.1007/s12686-016-0593-0>.
13. Li, L.; Chen, X.; Yao, X. [and others]. 2010. Geographic distribution and resource status of three important *Akebia* species. Journal of Wuhan Botanical Research. 28: 497-506. <http://dx.doi.org/10.3724/SP.J.1142.2010.40497>. [Chinese, English abstract].
14. Li, L.; Yao, X.; Zhong, C. [and others]. 2010. *Akebia*: a potential new fruit crop in China. HortScience. 45(1): 4-10. <https://doi.org/10.21273/HORTSCI.45.1.4>.
15. Nakanishi, H. 1988. Myrmecochores in warm-temperate zone of Japan. Japanese Journal of Ecology. 38(2): 169-176. [https://doi.org/10.18960/seitai.38.2\\_169](https://doi.org/10.18960/seitai.38.2_169). [Japanese, English abstract].
16. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.
17. Rim, A.-R.; Kim, S.-J.; Jeon, K.-I. [and others]. 2006. Antioxidant activity of extracts from *Akebia quinata* Decne. Preventive Nutrition and Food Science. 11(1): 84-87.
18. Shin, S.; Son, D.; Kim, M. [and others]. 2015. Ameliorating effect of *Akebia quinata* fruit extracts on skin aging induced by advanced glycation end products. Nutrients. 7(11): 9337-9352.  
<https://doi.org/10.3390/nu7115478>.
19. Smittle, D., ed. 2002. Care-free plants: a guide to growing the 200 hardest low-maintenance, long-living beauties. Pleasantville, NY: The Reader's Digest Association. 352 p.
20. Sung, Y.-Y.; Kim, D.-S.; Kim, H.K. 2015. *Akebia quinata* extract exerts anti-obesity and hypolipidemic effects in high-fat diet-fed mice and 3T3-L1 adipocytes. Journal of Ethnopharmacology. 168: 17-24.  
<https://doi.org/10.1016/j.jep.2015.03.051>.

21. Won, J.B.; Ma, C.J. 2009. Neuroprotective activities of some medicinal plants against glutamate-induced neurotoxicity in primary cultures of rat cortical cells. *Natural Product Sciences*. 15(3): 125-129.
22. Xiong, D.; Wang, J.; Xi, Z.; Lin, G. 2006. Study on the seed dormancy and germination technology of *Akebia trifoliata*. *Journal of Hunan University of Arts and Science*. 18: 46-49.

**Photograph Information:**

Leaves [UGA5456641]; Flowers [UGA5456550]; Close-up female flower [UGA5456622]; Fruit [UGA5456606]: Leslie J. Mehrhoff, University of Connecticut. Photographs reproduced from [www.invasive.org](http://www.invasive.org).



1. Brizicky, G. 1964. The genera of Celastrales in the Southeastern United States. *Journal of Arnold Arboretum*. 45(2): 206-234.  
<https://www.jstor.org/stable/43781498>.
2. Cipollini, K.; Greenawalt Bohrer, M. 2016. Comparison of allelopathic effects of five invasive species on two native species. *Journal of the Torrey Botanical Society*. 143(4): 427-436.  
<http://dx.doi.org/10.3159/TORREY-D-15-00062.1>.
3. Dirr, M.A. 1998. Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses. 5<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 1,187 p.
4. Dreyer, G.D.; Baird, L.M.; Fickler, C. 1987. *Celastrus scandens* and *Celastrus orbiculatus*: comparisons of reproductive potential between a native and an introduced woody vine. *Bulletin of the Torrey Botanical Club*. 114(3): 260-264.  
<https://doi.org/10.2307/2996463>.
5. Fernald, M.L. 1950. Gray's manual of botany. 8<sup>th</sup> ed. New York: American Book Company. 1,632 p.
6. Fike, J.; Niering, W.A. 1999. Four decades of old field vegetation development and the role of *Celastrus orbiculatus* in the Northeastern United States. *Journal of Vegetation Science*. 10(4): 483-492.  
<https://doi.org/10.2307/3237183>.
7. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
8. Greenberg, C.H.; Smith, L.M.; Levey, D.J. 2001. Fruit fate, seed germination and growth of an invasive vine – an experimental test of 'sit and wait' strategy. *Biological Invasions*. 3(4): 363-372.  
<https://doi.org/10.1023/A:1015857721486>.
9. Hou, D. 1955. A revision of the genus *Celastrus*. *Annals of the Missouri Botanical Garden*. 42(3): 215-302. <https://doi.org/10.2307/2394657>.
10. Hutchinson, M. 1992. Vegetation management guideline: round-leaved bittersweet (*Celastrus orbiculatus* Thunb.). *Natural Areas Journal*. 12(3): 161.  
[http://www.naturalareas.org/docs/53NAJ1203\\_161.pdf](http://www.naturalareas.org/docs/53NAJ1203_161.pdf).

*Celastrus orbiculatus*  
ORIENTAL BITTERSWEET

11. Kim, S.E.; Kim, Y.H.; Lee, J.J.; Kim, Y.C. 1998. A new sesquiterpene ester from *Celastrus orbiculatus* reversing multidrug resistance in cancer cells. *Journal of Natural Products*. 61(1): 108-111.  
<https://doi.org/10.1021/np9702392>.
12. Kuhman, T.R.; Pearson, S.M.; Turner, M.G. 2013. Why does land-use history facilitate non-native plant invasion? A field experiment with *Celastrus orbiculatus* in the southern Appalachians. *Biological Invasions*. 15(3): 613-626.  
<https://doi.org/10.1007/s10530-012-0313-y>.
13. Ladwig, L.M.; Meiners, S.J.; Pisula, N.L.; Lang, K.A. 2012. Conditional allelopathic potential of temperate lianas. *Plant Ecology*. 213(12): 1927-1935.  
<https://doi.org/10.1007/s11258-012-0087-4>.
14. Leicht-Young, S.A.; Healy, R.; Del Tredici, P. 2016. Observations of mycorrhizal colonization in roots in natural populations of *Celastrus orbiculatus* Thunb. *Journal of the Torrey Botanical Society*. 143(3): 322-324.  
<https://doi.org/10.3159/TORREY-D-15-00042.1>.
15. Leicht-Young, S.A.; Latimer, A.M.; Silander, J.A., Jr. 2011. Lianas escape self-thinning: experimental evidence of positive density dependence in temperate lianas *Celastrus orbiculatus* and *C. scandens*. *Perspectives in Plant Ecology, Evolution and Systematics*. 13(3): 163-172.  
<https://doi.org/10.1016/j.ppees.2011.04.002>.
16. Leicht-Young, S.A.; O'Donnell, H.; Latimer, A.M.; Silander, J.A., Jr. 2009. Effects of an invasive plant species, *Celastrus orbiculatus*, on soil composition and processes. *American Midland Naturalist*. 161(2): 219-231. <https://doi.org/10.1674/0003-0031-161.2.219>.
17. Leicht-Young, S.A.; Silander, J.A., Jr.; Latimer, A.M. 2007. Comparative performance of invasive and native *Celastrus* species across environmental gradients. *Oecologia*. 154(2): 273-282.  
<http://dx.doi.org/10.1007/s00442-007-0839-3>.
18. Lett, C.N.; DeWald, L.E.; Horton, J. 2011. Mycorrhizae and soil phosphorus affect growth of *Celastrus orbiculatus*. *Biological Invasions*. 13(10): 2339-2350.  
<http://dx.doi.org/10.1007/s10530-011-0046-3>.

19. McNab, W.H.; Meeker, M. 1987. Oriental bittersweet: a growing threat to hardwood silviculture in the Appalachians. *Northern Journal of Applied Forestry*. 4(4): 174-177. <https://doi.org/10.1093/njaf/4.4.174>.

20. Min, K.R.; Hwang, B.Y.; Lim, H.-S. [and others]. 1999. (-)-Epiafzelechin: Cycloxygenase-1 inhibitor and anti-inflammatory agent from aerial parts of *Celastrus orbiculatus*. *Planta Medica*. 65(5): 460-462. <https://doi.org/10.1055/s-2006-960813>.

21. Patterson, D.T. 1975. Photosynthetic acclimation to irradiance in *Celastrus orbiculatus* Thunb. *Photosynthetica*. 9(2): 140-144.

22. Pooler, M.R.; Dix, R.L.; Feely, J. 2002. Interspecific hybridizations between the native bittersweet, *Celastrus scandens*, and the introduced invasive species, *C. orbiculatus*. *Southeastern Naturalist*. 1(1): 69-76. [http://dx.doi.org/10.1656/1528-7092\(2002\)001\[0069:IHBTNB\]2.0.CO;2](http://dx.doi.org/10.1656/1528-7092(2002)001[0069:IHBTNB]2.0.CO;2).

23. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

24. Robinson, G.R.; Handel, S.N. 1993. Forest restoration on a closed landfill: rapid addition of new species by bird dispersal. *Conservation Biology*. 7(2): 271-278. <http://dx.doi.org/10.1046/j.1523-1739.1993.07020271.x>.

25. Silveri, A.; Dunwiddie, P.W.; Michaels, H.J. 2001. Logging and edaphic factors in the invasion of an Asian woody vine in a mesic North American forest. *Biological Invasions*. 3(4): 379-389. <https://doi.org/10.1023/A:1015898818452>.

26. Tibbetts, T.J.; Ewers, F.W. 2000. Root pressure and specific conductivity in temperate lianas: Exotic *Celastrus orbiculatus* (Celastraceae) vs. native *Vitis riparia* (Vitaceae). *American Journal of Botany*. 87(9): 1272-1278. <http://dx.doi.org/10.2307/2656720>.

27. Van Clef, M.; Stiles, E.W. 2001. Seed longevity in three pairs of native and non-native congeners: assessing invasive potential. *Northeastern Naturalist*. 8(3): 301-310. [https://doi.org/10.1656/1092-6194\(2001\)008\[0301:SLITPO\]2.0.CO;2](https://doi.org/10.1656/1092-6194(2001)008[0301:SLITPO]2.0.CO;2).

28. White, O.E.; Bowden, W.M. 1947. Oriental and American bittersweet hybrids. *Journal of Heredity*. 38(4): 125-127.

*Celastrus orbiculatus*  
ORIENTAL BITTERSWEET

29. Wyman, D. 1950. Fruiting habits of certain ornamental plants. *Arnoldia*. 10(13): 81-85.  
<http://arnoldia.arboretum.harvard.edu/pdf/articles/1950-10--fruiting-habits-of-certain-ornamental-plants.pdf>.

30. Zaya, D.N.; Leicht-Young, S.A.; Pavlovic, N.B. [and others]. 2015. Genetic characterization of hybridization between native and invasive bittersweet vines (*Celastrus* spp.). *Biological Invasions*. 17(10): 2975-2988.  
<https://doi.org/10.1007/s10530-015-0926-z>.

31. Zhu, Y.; Liu, Y.; Qian, Y. [and others]. 2015. Antimetastatic effects of *Celastrus orbiculatus* on human gastric adenocarcinoma by inhibiting epithelial-mesenchymal transition and NF-κB/Snail signaling pathway. *Integrative Cancer Therapies*. 14(3): 271-281.  
<https://doi.org/10.1177/1534735415572880>.

**Photograph Information:**

Leaves [UGA0016241]; Infestation [UGA0016097]: James H. Miller, USDA Forest Service. Flowers [UGA5487385]; Fruit [UGA5487340]: Leslie J. Merhroff, University of Connecticut. Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Andrews, E.F. 1919. The Japanese honeysuckle in the Eastern United States. *Torreya*. 19(3): 37-43. <https://www.jstor.org/stable/40595996>.
2. Bell, D.J.; Forseth, I.N.; Teramura, A.H. 1988. Field water relations of three temperate vines. *Oecologia*. 74(4): 537-545. <https://doi.org/10.1007/BF00380051>.
3. Carter, G.A.; Teramura, A.H. 1988. Nonsummer stomatal conductance for the invasive vines kudzu and Japanese honeysuckle. *Canadian Journal of Botany*. 66(12): 2392-2395. <http://dx.doi.org/10.1139/b88-325>.
4. Carter, G.A.; Teramura, A.H. 1988. Vine photosynthesis and relationships to climbing mechanics in a forest understory. *American Journal of Botany*. 75(7): 1011-1018. <https://doi.org/10.2307/2443769>.
5. Carter, G.A.; Teramura, A.H.; Forseth, I.N. 1989. Photosynthesis in an open field for exotic versus native vines of the Southeastern United States. *Canadian Journal of Botany*. 67(2): 443-446. <https://doi.org/10.1139/b89-061>.
6. Dillenburg, L.R.; Whigham, D.F.; Teramura, A.H.; Forseth, I.N. 1993. Effects of below- and aboveground competition from the vines *Lonicera japonica* and *Parthenocissus quinquefolia* on the growth of the tree host *Liquidambar styraciflua*. *Oecologia*. 93(1): 48-54. <https://doi.org/10.1007/BF00321190>.
7. Dillenburg, L.R.; Whigham, D.F.; Teramura, A.H.; Forseth, I.N. 1993. Effects of vine competition on availability of light, water, and nitrogen to a tree host (*Liquidambar styraciflua*). *American Journal of Botany*. 80(3): 244-252. <https://doi.org/10.2307/2445347>.
8. Dillenburg, L.R.; Teramura, A.H.; Forseth, I.N.; Whigham, D.F. 1995. Photosynthetic and biomass allocation responses of *Liquidambar styraciflua* (Hamamelidaceae) to vine competition. *American Journal of Botany*. 82(4): 454-461. <https://doi.org/10.1002/j.1537-2197.1995.tb15664.x>.
9. Dirr, M.A. 1998. Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses. 5<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 1,187 p.

*Lonicera japonica*

JAPANESE HONEYSUCKLE

10. Dyess, J.G.; Causey, M.K.; Stribling, H.L. 1994. Effects of fertilization on production and quality of Japanese honeysuckle. *Southern Journal of Applied Forestry*. 18(2): 68-71. <https://doi.org/10.1093/sjaf/18.2.68>.
11. Fernald, M.L. 1950. *Gray's manual of botany*. 8<sup>th</sup> ed. New York: American Book Company. 1,632 p.
12. Fowler, S.P.; Larson, K.C. 2004. Seed germination and seedling recruitment of Japanese honeysuckle in a central Arkansas natural area. *Natural Areas Journal*. 24(1): 49-53.  
<https://www.researchgate.net/publication/262260733>.
13. Gleason, H.A.; Cronquist, A. 1993. *Manual of vascular plants of Northeastern United States and adjacent Canada*. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
14. Han, J.M.; Kim, M.H.; Choi, Y.Y. [and others]. 2015. Effects of *Lonicera japonica* Thunb. on type 2 diabetes via PPAR- $\gamma$  activation in rats. *Phytotherapy Research*. 29(10): 1616-1621.  
<http://dx.doi.org/10.1002/ptr.5413>.
15. Haywood, J.D. 1994. Seed viability of selected tree, shrub, and vine species stored in the field. *New Forests*. 8: 143-154. <https://doi.org/10.1007/BF00028190>.
16. Hidayati, S.N.; Baskin, J.M.; Baskin C.C. 2000. Dormancy-breaking and germination requirements of seeds of four *Lonicera* species (Caprifoliaceae) with underdeveloped spatulate embryos. *Seed Science Research*. 10(4): 459-469.  
<https://doi.org/10.1017/S0960258500000507>.
17. Houghton, P.J.; Boxu, Z.; Xisheng, Z. 1993. A clinical evaluation of the Chinese herbal mixture 'Aden-I' for treating respiratory infections. *Phytotherapy Research*. 7(5): 384-386.  
<https://doi.org/10.1002/ptr.2650070513>.
18. Jia, L.; He, X.; Chen, W. [and others]. 2013. Hormesis phenomena under Cd stress in a hyperaccumulator—*Lonicera japonica* Thunb. *Ecotoxicology*. 22(3):476-485. <https://doi.org/10.1007/s10646-013-1041-5>.
19. Jia, L.; Liu, Z.; Chen, W. [and others]. 2015. Hormesis effects induced by cadmium on growth and photosynthetic performance in a hyperaccumulator, *Lonicera japonica* Thunb. *Journal of Plant Growth Regulation*. 34(1): 13-21.  
<http://dx.doi.org/10.1007/s00344-014-9433-1>.

20. Jeong, J.J.; Ha, Y.M.; Jin, Y.C. [and others]. 2009. Rutin from *Lonicera japonica* inhibits myocardial ischemia/reperfusion-induced apoptosis *in vivo* and protects H9c2 cells against hydrogen peroxide-mediated injury via ERK1/2 and PI3K/Akt signals *in vitro*. *Food and Chemical Toxicology*. 47(7): 1569-1576.  
<https://doi.org/10.1016/j.fct.2009.03.044>.

21. Kurz, D. 1997. Shrubs and woody vines of Missouri. Jefferson City, MO: Missouri Department of Conservation. 387 p.

22. Larson, K.C.; Fowler, S.P.; Walker, J.C. 2002. Lack of pollinators limits fruit set in the exotic *Lonicera japonica*. *American Midland Naturalist*. 148(1): 54-60.  
[http://dx.doi.org/10.1674/0003-0031\(2002\)148\[0054:LOPLFS\]2.0.CO;2](http://dx.doi.org/10.1674/0003-0031(2002)148[0054:LOPLFS]2.0.CO;2).

23. Larson, B.M.; Catling, P.M.; Waldron, G.E. 2007. The biology of Canadian weeds. 135. *Lonicera japonica* Thunb. *Canadian Journal of Plant Science*. 87(2): 423-438. <https://doi.org/10.4141/P06-063>.

24. Leatherman, A.D. 1955. Ecological life-history of *Lonicera japonica* Thunb. Knoxville, TN: University of Tennessee. 97 p. Ph.D. dissertation.  
[https://trace.tennessee.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=3122&context=utk\\_graddiss](https://trace.tennessee.edu/cgi/viewcontent.cgi?referer=https://www.google.com/&httpsredir=1&article=3122&context=utk_graddiss).

25. Lee, S.J.; Son, K.H.; Chang, H.W. [and others]. 1998. Antiinflammatory activity of *Lonicera japonica*. *Phytotherapy Research*. 12(6): 445-447.  
[https://doi.org/10.1002/\(SICI\)1099-1573\(199809\)12:6<445::AID-PTR317>3.0.CO;2-5](https://doi.org/10.1002/(SICI)1099-1573(199809)12:6<445::AID-PTR317>3.0.CO;2-5).

26. Li, W.-D.; Biswas, D.K.; Xu, H. [and others]. 2009. Photosynthetic responses to chromosome doubling in relation to leaf anatomy in *Lonicera japonica* subjected to water stress. *Functional Plant Biology*. 36(9): 783-792.  
<http://dx.doi.org/10.1071/FP09022>.

27. Li, W.D.; Hu, X.; Liu, J.K. [and others]. 2011. Chromosome doubling can increase heat tolerance in *Lonicera japonica* as indicated by chlorophyll fluorescence imaging. *Biologia Plantarum*. 55(2): 279-284. <http://dx.doi.org/10.1007/s10535-011-0039-1>.

28. Miyake, T.; Yahara, T. 1998. Why does the flower of *Lonicera japonica* open at dusk? *Canadian Journal of Botany*. 76(10): 1806-1811.  
<http://dx.doi.org/10.1139/b98-119>.

*Lonicera japonica*

JAPANESE HONEYSUCKLE

29. Miyake, T.; Yamaoka, R.; Yahara, T. 1998. Floral scents of hawkmoth – pollinated flowers in Japan. *Journal of Plant Research*. 111(2): 199-205.  
<http://dx.doi.org/10.1007/BF02512170>.

30. Rahman, A.; Kang, S.C. 2009. *In vitro* control of food-borne and food spoilage bacteria by essential oil and ethanol extracts of *Lonicera japonica* Thunb. *Food Chemistry*. 116(3): 670-675.  
<https://doi.org/10.1016/j.foodchem.2009.03.014>.

31. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

32. Roberts, A.V. 1979. The pollination of *Lonicera japonica*. *Journal of Agricultural Research*. 18(2): 153-158.  
<https://doi.org/10.1080/00218839.1979.11099960>.

33. Robertson, D.J.; Robertson, M.C.; Tague, T. 1994. Colonization dynamics of four exotic plants in a northern Piedmont natural area. *Bulletin of the Torrey Botanical Club*. 121(2): 107-118.  
<https://doi.org/10.2307/2997162>.

34. Sasek, T.W.; Strain, B.R. 1990. Implications of atmospheric CO<sub>2</sub> enrichment and climatic change for the geographical distribution of two introduced vines in the U.S.A. *Climatic Change*. 16(1): 31-51.  
<https://doi.org/10.1007/BF00137345>.

35. Schierenbeck, K.A.; Hamricks, J.L.; Mack, R.N. 1995. Comparison of allozyme variability in a native and an introduced species of *Lonicera*. *Heredity*. 75(1): 1-9.  
<https://doi.org/10.1038/hdy.1995.97>.

36. Schierenbeck, K.A.; Mack, R.N.; Sharitz, R.R. 1994. Effects of herbivory on growth and biomass allocation in native and introduced species of *Lonicera*. *Ecology*. 75(6): 1661-1672.  
<https://doi.org/10.2307/1939626>.

37. Schierenbeck, K.A.; Marshall, J.D. 1993. Seasonal and diurnal patterns of photosynthetic gas exchange for *Lonicera sempervirens* and *L. japonica*. *American Journal of Botany*. 80(11): 1292-1299.  
<https://doi.org/10.2307/2445713>.

38. Schweitzer, J.A.; Larson, K.C. 1999. Greater morphological plasticity of exotic honeysuckle species may make them better invaders than native species. *Journal of the Torrey Botanical Society*. 126(1): 15-23.  
<https://doi.org/10.2307/2997251>.

39. Shang, X.; Pan, H.; Li, M. [and others]. 2011. *Lonicera japonica* Thunb.: ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. *Journal of Ethnopharmacology*. 138(1): 1-21. <https://doi.org/10.1016/j.jep.2011.08.016>.

40. Sheldon, J.J.; Causey, M.K. 1974. Deer habitat management: use of Japanese honeysuckle by white-tailed deer. *Journal of Forestry*. 72(5): 286-287.

41. Shelton, M.G.; Cain, M.D. 2002. Potential carry-over of seeds from 11 common shrub and vine competitors of loblolly and shortleaf pines. *Canadian Journal of Forest Research*. 32(3): 412-419. <http://dx.doi.org/10.1139/x01-207>.

42. Skulman, B.W.; Mattice, J.D.; Cain, M.D.; Gbur, E.E. 2004. Evidence for allelopathic interference of Japanese honeysuckle (*Lonicera japonica*) to loblolly and shortleaf pine regeneration. *Weed Science*. 52(3): 433-439. <https://doi.org/10.1614/WS-03-030R>.

43. Slezak, W.F. 1976. *Lonicera japonica* Thunb., an aggressive introduced species in a mature forest ecosystem. New Brunswick, NJ: Rutgers University. 81 p. M.S. thesis.

44. Sotala, D.J.; Kirkpatrick, C.M. 1973. Foods of white-tailed deer, *Odocoileus virginianus*, in Martin County, Indiana. *American Midland Naturalist*. 89(2): 281-286. <https://doi.org/10.2307/2424033>.

45. Zhou, H.Y.; Zhao, N.N.; Du, S.S. [and others]. 2012. Insecticidal activity of the essential oil of *Lonicera japonica* flower buds and its main constituent compounds against two grain storage insects. *Journal of Medicinal Plant Research*. 6(5): 912-917. <https://www.researchgate.net/publication/267366438>.

### Photograph Information:

Plant [UGA5518363]: Richard Gardner, Bugwood.org. Leaves [UGA2307154]; Fruit [UGA2307155]: James H. Miller & Ted Bodner, Southern Weed Science Society. Flowers and leaves [UGA2308104]: Chuck Bargeron, University of Georgia. Photographs reproduced from [www.invasive.org](http://www.invasive.org).



1. Baskin, C.C.; Baskin, J.M. 2001. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, CA: Academic Press. 666 p.
2. Berg, S.H.; Hough-Goldstein, J.; Lake, E.C.; D'Amico, V. 2015. Mile-a-minute weed (*Persicaria perfoliata*) and weevil (*Rhinoncomimus latipes*) response to varying moisture and temperature conditions. *Biological Control*. 83: 68-74.  
<http://dx.doi.org/10.1016/j.biocontrol.2015.01.001>.
3. Cusick, A.W.; Ortt, M. 1987. *Polygonum perfoliatum* L. (Polygonaceae): a significant new weed in the Mississippi drainage. *SIDA Contributions to Botany*. 12(1): 246-249. <https://www.jstor.org/stable/23909865>.
4. Fernald, M.L. 1950. Gray's manual of botany. 8<sup>th</sup> ed. New York: American Book Company. 1,632 p.
5. Girard, C.B.; Kleppel, G.S. 2011. Intensive rotational grazing of Romney sheep as a control for the spread of *Persicaria perfoliata*. In: Yozzo, D.J.; Fernald, S.H.; Andreyko, H., eds. Final Reports of the Tibor T. Polgar Fellowship Program, 2009. New York: Hudson River Foundation. Section III: 1-22. [http://www.hudsonriver.org/ls/reports/Polgar\\_Girard\\_TP\\_02\\_09\\_final.pdf](http://www.hudsonriver.org/ls/reports/Polgar_Girard_TP_02_09_final.pdf).
6. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
7. He, S.Y.; Xing, Q.H.; Yin, Z.T.; Jiang, E.P. 1984. Flora of Beijing. Vol. 1. Beijing: Beijing Press. 710 p.
8. Hickman, J.C.; Hickman, C.S. 1978. *Polygonum perfoliatum*: a recent Asiatic adventive. *Bartonia*. 45: 18-23. <https://www.jstor.org/stable/41609820>.
9. Hough-Goldstein, J.; LaCoss, S.J. 2011. Interactive effects of light environment and herbivory on growth and productivity of an invasive annual vine, *Persicaria perfoliata*. *Arthropod-Plant Interactions*. 6(1): 103-112.  
<http://dx.doi.org/10.1007/s11829-011-9158-z>.
10. Hough-Goldstein, J.; Lake, E.; Reardon, R.; Wu, Y. 2015. Biology and biological control of mile-a-minute weed. Revised. FHTET-2008-10. U.S. Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team. 75 p. <https://cdn.canr.udel.edu/wp-content/uploads/sites/6/2016/03/09184336/HG-et-al.-2015.-FHTET-revision.pdf>.

*Persicaria perfoliata*  
MILE-A-MINUTE WEED

11. Hough-Goldstein, J.; Lake, E.C.; Shropshire, K.J.; Moore, R.A. 2016. Laboratory and field-based temperature-dependent development of a monophagous weevil: implications for integrated weed management. *Biological Control*. 92: 120-127. <http://dx.doi.org/10.1016/j.biocontrol.2015.10.009>.
12. Lake, E.C.; Hough-Goldstein, J.; D'Amico, V. 2013. Integrating management techniques to restore sites invaded by mile-a-minute weed, *Persicaria perfoliata*. *Restoration Ecology*. 22(2): 127-133. <http://dx.doi.org/10.1111/rec.12035>.
13. McCormick, L.H.; Hartwig, N.L. 1995. Control of the noxious weed mile-a-minute (*Polygonum perfoliatum*) in reforestation. *Northern Journal of Applied Forestry*. 12(3): 127-132. <https://doi.org/10.1093/njaf/12.3.127>.
14. McCormick, L.H.; Johnson, C.F., Jr. 1998. Mile-a-minute weed in the northeast. In: Britton, K.O., ed. *Exotic pests of Eastern forests conference proceedings*; April 8-10, 1997. Atlanta, GA: U.S. Department of Agriculture, Forest Service; Nashville, TN: Tennessee Exotic Pest Plant Council: 151-154. <https://www.fs.usda.gov/treesearch/pubs/43123>.
15. Okay, J.A.G. 1997. *Polygonum perfoliatum*: A study of biological and ecological features leading to the formation of a management policy. Fairfax, VA: George Mason University. 132 p. Ph.D. dissertation.
16. Oliver, J.D.; Coile, N.C. 1994. *Polygonum perfoliatum* L. (Polygonaceae), the mile-a-minute weed. Florida Department of Agriculture & Consumer Services, Division of Plant Industry. Botany Circular No. 29. 4 p. <https://www.fdacs.gov/ezs3download/download/25257/516173/Botcirc29.pdf>.
17. Oliver, J.D. 1996. Mile-a-minute weed (*Polygonum perfoliatum* L.), an invasive vine in natural and disturbed sites. *Castanea*. 61(3): 244-251. <https://www.jstor.org/stable/4033677>.
18. Park, C.W. 1986. Nomenclatural typifications in *Polygonum* Section *Echinocaulon* (Polygonaceae). *Brittonia*. 38(4): 394-406. <https://link.springer.com/article/10.2307/2807086>.

19. Price, D.L.; Hough-Goldstein, J.; Smith, M.T. 2003. Biology, rearing, and preliminary evaluation of host range of two potential biological control agents for mile-a-minute weed, *Polygonum perfoliatum* L. *Environmental Entomology*. 32(1): 229-236. <http://doi.org/10.1603/0046-225X-32.1.229>.

20. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

21. Riefner, R.E. 1982. Studies on the Maryland flora VIII: range extensions of *Polygonum perfoliatum* L. with notes on introduction and dispersal in North America. *Phytologia*. 50(2): 152-159.

22. Smith, J.R.; Hough-Goldstein, J. 2014. Impact of herbivory on mile-a-minute weed (*Persicaria perfoliata*) seed production and viability. *Biological Control*. 76: 60-64. <https://doi.org/10.1016/j.biocontrol.2014.05.003>.

23. Smith, J.R.; Hough-Goldstein, J.; Lake, E.C. 2014. Variable seed viability of mile-a-minute weed (devil's tearthumb, *Persicaria perfoliata*). *Invasive Plant Science and Management*. 7(1): 107-112. <http://doi.org/10.1614/IPSM-D-13-00056.1>.

24. Van Clef, M. 2001. Early life stage performance of native and non-native congeners of *Polygonum*, *Celastrus*, and *Parthenocissus*: Assessing methods of screening new plant introductions for invasive potential. New Brunswick, NJ: Rutgers University. 166 p. Ph.D. dissertation.

25. Van Clef, M.; Stiles, E.W. 2001. Seed longevity in three pairs of native and non-native cogeners: assessing invasive potential. *Northeastern Naturalist*. 8(3): 301-310. [https://doi.org/10.1656/1092-6194\(2001\)008\[0301:SLITPO\]2.0.CO;2](https://doi.org/10.1656/1092-6194(2001)008[0301:SLITPO]2.0.CO;2).

26. Wang, K-W.; Zhu, J-R.; Shen, L-Q. 2013. A new lignin with anti-tumour activity from *Polygonum perfoliatum* L. *Natural Product Research*. 27(6): 568-573. <https://doi.org/10.1080/14786419.2012.682993>.

*Persicaria perfoliata*  
MILE-A-MINUTE WEED

27. Wheeler, A.G., Jr.; Mengel, S.A. 1984. Phytophagous insect fauna of *Polygonum perfoliatum*, an Asiatic weed recently introduced to Pennsylvania. Annals of the Entomological Society of America. 77(2): 197-202. <https://doi.org/10.1093/aesa/77.2.197>.

28. Winston, R.L.; Randall, C.B.; Blossey, B. [and others]. 2017. Mile-a-minute weed: *Persicaria perfoliata* (L.) H. Gross. In: Field Guide for the biological control of weeds in Eastern North America. FHTET-2016-04. Morgantown, WV: U.S. Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team: 160-163. [https://www.fs.fed.us/foresthealth/technology/pdfs/FHTET-2016-04\\_Biocontrol\\_Field\\_Guide.pdf](https://www.fs.fed.us/foresthealth/technology/pdfs/FHTET-2016-04_Biocontrol_Field_Guide.pdf).

29. Wu, Y.; Reardon, R.C.; Jian-qing, D. 2002. Mile-a-minute weed. In: Van Driesche, R.; Blossey, B.; Hoddle, M. [and others], eds. Biological control of invasive plants in the Eastern United States. FHTET-2002-04. Morgantown, WV: U.S. Department of Agriculture, Forest Service: 331-341. [https://www.fs.fed.us/foresthealth/technology/pdfs/BiocontrolsOfInvasivePlants02\\_04.pdf](https://www.fs.fed.us/foresthealth/technology/pdfs/BiocontrolsOfInvasivePlants02_04.pdf).

**Photograph Information:**

Leaves [UGA1237070]: Britt Slattery, U.S. Fish and Wildlife Service. Stem [UGA5480395]; Flowers [UGA5480493]; Fruit [UGA5480426]: Leslie J. Mehrhoff, University of Connecticut. Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Achremowicz, B.; Tanner, R.D.; Prokop, A.; Grisso, R.D. 1994. The effect of frost on the starch yield from kudzu (*Pueraria lobata*) roots of various ages grown in northern Alabama. *Bioresource Technology*. 47(2): 149-151.  
[https://doi.org/10.1016/0960-8524\(94\)90113-9](https://doi.org/10.1016/0960-8524(94)90113-9).
2. Callen, S.T.; Miller, A.J. 2015. Signatures of niche conservatism and niche shift in the North American kudzu (*Pueraria montana*) invasion. *Diversity and Distributions*. 21(8): 853-863.  
<https://doi.org/10.1111/ddi.12341>.
3. Carter, G.A.; Teramura, A.H. 1988. Vine photosynthesis and relationships to climbing mechanics in a forest understory. *American Journal of Botany*. 75(7): 1011-1018.  
<https://doi.org/10.2307/2443769>.
4. Carter, G.A.; Teramura, A.H. 1988. Nonsummer stomatal conductance for the invasive vines kudzu and Japanese honeysuckle. *Canadian Journal of Botany*. 66(12): 2392-2395.  
<http://dx.doi.org/10.1139/b88-325>.
5. Corley, R.N.; Woldegehebriel, A.; Murphy, M.R. 1997. Evaluation of the nutritive value of kudzu (*Pueraria lobata*) as a feed for ruminants. *Animal Feed Science and Technology*. 68(1-2): 183-188.  
[https://doi.org/10.1016/S0377-8401\(97\)00038-2](https://doi.org/10.1016/S0377-8401(97)00038-2).
6. Fernald, M.L. 1950. *Gray's manual of botany*. 8<sup>th</sup> ed. New York: American Book Company. 1,632 p.
7. Forseth, I.N.; Teramura, A.H. 1986. Kudzu leaf energy budget and calculated transpiration: the influence of leaf orientation. *Ecology*. 67(2): 564-571.  
<https://doi.org/10.2307/1938599>.
8. Forseth, I.N.; Teramura, A.H. 1987. Field of photosynthesis microclimate and water relations on an exotic temperate liana *Pueraria lobata* kudzu. *Oecologia*. 71(2): 262-267.  
<https://doi.org/10.1007/bf00377293>.
9. Frankel, E. 1989. Distribution of *Pueraria lobata* in and around New York City. *Bulletin of the Torrey Botanical Club*. 116(4): 390-394.  
<https://doi.org/10.2307/2996629>.

*Pueraria montana* var. *lobata*

KUDZU VINE

10. Frye, M.J.; Hough-Goldstein, J.; Kidd, K.A. 2012. Response of kudzu (*Pueraria montana* var. *lobata*) seedlings and naturalized plants to simulated herbivory. *Invasive Plant Science and Management*. 5(4): 417-426. <https://doi.org/10.1614/IPSM-D-12-00001.1>.
11. Fujita, K.; Matsumoto, K.; Ofosu-Budu, G.K.; Ogata, S. 1993. Effect of shading on growth and dinitrogen fixation of kudzu and tropical pasture legumes. *Soil Science and Plant Nutrition*. 39(1): 43-54. <https://doi.org/10.1080/00380768.1993.10416973>.
12. Gleason, H.A.; Cronquist, A. 1993. *Manual of vascular plants of Northeastern United States and adjacent Canada*. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
13. Hickman, J.E.; Wu, S.; Mickley, L.J.; Lerdau, M.T. 2010. Kudzu (*Pueraria montana*) invasion doubles emissions of nitric oxide and increases ozone pollution. *Proceedings of the National Academy of Sciences of the United States of America*. 107(22): 10,115-10,119. <https://doi.org/10.1073/pnas.0912279107>.
14. Hipps, C.B. 1994. Kudzu: a vegetable menace that started out as a good idea. *Horticulture*. 72(6): 36-39.
15. Jewett, D.K.; Jiang, C.J.; Britton, K.O. [and others]. 2003. Characterizing specimens of kudzu and related taxa with RAPD's. *Castanea*. 68(3): 254-260. <https://www.jstor.org/stable/4034173>.
16. Kartzinel, T.R.; Hamrick, J.L.; Wang, C. [and others]. 2015. Heterogeneity of clonal patterns among patches of kudzu, *Pueraria montana* var. *lobata*, an invasive plant. *Annals of Botany*. 116(5): 739-750. <https://doi.org/10.1093/aob/mcv117>.
17. Keung, W.M.; Vallee, B.L. 1998. Kudzu root: an ancient Chinese source of modern antidipsotropic agents. *Phytochemistry*. 47(4): 499-506. [https://doi.org/10.1016/s0031-9422\(97\)00723-1](https://doi.org/10.1016/s0031-9422(97)00723-1).
18. Lynd, J.Q.; Ansman, T.R. 1990. Exceptional forage regrowth nodulation and nitrogenase activity of kudzu (*Pueraria lobata* (Willd.) Ohwi [sic]) grown on eroded Dougherty loam subsoil. *Journal of Plant Nutrition*. 13(7): 861-886. <https://doi.org/10.1080/01904169009364122>.
19. Mitich, L.W. 2000. Intriguing world of weeds—kudzu [*Pueraria lobata* (Willd.) Ohwi]. *Weed Technology*. 14(1): 231-235.

20. Myers, M.C.; Bowden, R.A.; Hardisty, F.E. 1938. Stimulation of kudzu cuttings. *Science*. 88(2,277): 167. <https://doi.org/10.1126/science.88.2277.167>.

21. Pappert, R.A.; Hamrick, J.L.; Donovan, L.A. 2000. Genetic variation in *Pueraria lobata* (Fabaceae), an introduced, clonal, invasive plant of the Southeastern United States. *American Journal of Botany*. 87(9): 1240-1245. <https://doi.org/10.2307/2656716>.

22. Rashid, H.; Asaeda, T.; Uddin, N. 2010. The allelopathic potential of kudzu (*Pueraria montana*). *Weed Science*. 58(1): 47-55. <http://dx.doi.org/10.1614/WS-09-106.1>.

23. Rashid, H.; Asaeda, T.; Uddin, N. 2010. Litter-mediated allelopathic effects of kudzu (*Pueraria montana*) on *Bidens pilosa* and *Lolium perenne* and its persistence in soil. *Weed Biology and Management*. 10(1): 48-56. <https://doi.org/10.1111/j.1445-6664.2010.00366.x>.

24. Rezvani, A.H.; Overstreet, D.H.; Perfumi, M.; Massi, M. 2003. Plant derivatives in the treatment of alcohol dependency. *Pharmacology Biochemistry and Behavior*. 75(3): 593-606. [https://doi.org/10.1016/S0091-3057\(03\)00124-2](https://doi.org/10.1016/S0091-3057(03)00124-2).

25. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

26. Sage, R.F.; Coiner, H.A.; Way, D.A. [and others]. 2009. Kudzu [*Pueraria montana* (Lour.) Merr. variety *lobata*]: a new source of carbohydrate for bioethanol production. *Biomass and Bioenergy*. 33(1): 57-61. <https://doi.org/10.1016/j.biombioe.2008.04.011>.

27. Sanchez, P.A.; Benites, J.R. 1987. Low input cropping for acid soils of the humid tropics. *Science*. 238(4,833): 1521-1527. <https://doi.org/10.1126/science.238.4833.1521>.

28. Sasek, T.W.; Strain, B.R. 1990. Implications of atmospheric CO<sub>2</sub> enrichment and climatic change for the geographical distribution of two introduced vines in the U.S.A. *Climatic Change*. 16(1): 31-51. <http://dx.doi.org/10.1007/BF00137345>.

29. Sharkey, T.D.; Loreto, F. 1993. Water stress, temperature, and light effects on the capacity for isoprene emission and photosynthesis of kudzu leaves. *Oecologia*. 95(3): 328-333. <https://doi.org/10.1007/BF00320984>.

*Pueraria montana* var. *lobata*

KUDZU VINE

30. Shurtleff, W.; Aoyagi, A. 1977. The book of kudzu: a culinary and healing guide. Brookline, MA: Autumn Press. 102 p.

31. Sun, J.H.; Li, Z-C.; Jewett, D.K. [and others]. 2005. Genetic diversity of *Pueraria lobata* (kudzu) and closely related taxa as revealed by inter-simple sequence repeat analysis. *Weed Research*. 45(4): 255-260.  
<https://doi.org/10.1111/j.1365-3180.2005.00462.x>.

32. Susko, D.J.; Mueller, J.P.; Spears, J.F. 1999. Influence of environmental factors on germination and emergence of *Pueraria lobata*. *Weed Science*. 47(5): 585-588.  
<https://doi.org/10.1017/S0043174500092304>.

33. Susko, D.J.; Mueller, J.P.; Spears, J.F. 2001. An evaluation of methods for breaking seed dormancy in kudzu (*Pueraria lobata*). *Canadian Journal of Botany*. 79(2): 197-203.  
<http://dx.doi.org/10.1139/b00-153>.

34. Takahashi, T.; Nakamura, T.; Tsugawa, H. 1995. Soil properties of natural kudzu (*Pueraria lobata* Ohwi) stands established in the Paleozoic strata area of the Mt. Rokko district. *Nippon-Sochi-Gakkai-Shi* (Journal of Japanese Society of Grassland Science). 40(4): 362-372.

35. Tsugawa, H.; Tange, M.; Mizuta, Y. 1985. Influence of shade treatment on leaf and branch emergence, and dry matter production of kudzu vine seedlings (*Pueraria lobata* Ohwi). *Science Reports of Faculty of Agriculture Kobe University*. 16(2): 359-367.

36. Tsugawa, H.; Sasek, T.W.; Tange, M.; Nishikawa, K.I. 1987. A scarification method with a household mixer for kudzu seed *Pueraria lobata* Ohwi. *Science Reports of Faculty of Agriculture Kobe University*. 17(2): 167-170.

37. Tsugawa, H.; Sasek, T.W.; Takahashi, T.; Nishikawa, K.I. 1992. Demographic characteristics of overwintering stems and root systems which constitute a network in natural kudzu (*Pueraria lobata* Ohwi) stands. *Nippon-Sochi-Gakkai-Shi* (Journal of Japanese Society of Grassland Science). 38(1): 80-89.

38. Uludag, S.; Loha, V.; Prokop, A.; Tanner, R.D. 1996. The effect of fermentation (retting) time and harvest time on kudzu (*Pueraria lobata*) fiber strength. *Applied Biochemistry and Biotechnology*. 57(1): 75-84. <https://doi.org/10.1007/BF02941690>.

39. Uva, R.H.; Neal, J.C.; DiTomaso, J.M. 1997. *Weeds of the Northeast*. Ithaca, NY: Cornell University Press. 408 p.

**Photograph Information:**

Leaves [UGA2307160]; Flowers [UGA2307164]; Fruits [UGA2307165]: James H. Miller and Ted Bodner, Southern Weed Science Society. Photographs reproduced from [www.invasive.org](http://www.invasive.org).



1. Adams W.W., III; Demmig-Adams, B.; Rosenstiel, T.N.; Ebbert, V. 2001. Dependence of photosynthesis and energy dissipation activity upon growth form and light environment during the winter. *Photosynthesis Research.* 67(1-2): 51-62.  
<https://doi.org/10.1023/a:1010688528773>.
2. Bultman, T.L.; DeWitt, D.J. 2008. Effect of an invasive ground cover plant on the abundance and diversity of a forest floor spider assemblage. *Biological Invasions.* 10(5): 749-756.  
<https://doi.org/10.1007/s10530-007-9168-z>.
3. Čepková, P.H.; Karlík, P.; Viehmannová, I. [and others]. 2016. Genetic and leaf-trait variability of *Vinca minor* at ancient and recent localities in Central Europe. *Biochemical Systematics and Ecology.* 64: 22-30. <https://doi.org/10.1016/j.bse.2015.11.005>.
4. Darcy, A.J.; Burkart, M.C. 2002. Allelopathic potential of *Vinca minor*, an invasive exotic plant in west Michigan forests. *Bios.* 73(4): 127-132.  
<https://www.jstor.org/stable/pdf/4608646.pdf>.
5. Demmig-Adams, B.; Adams, W.W., III. 1996. The role of xanthophylls cycle carotenoids in the protection of photosynthesis. *Trends in Plant Science Reviews.* 1(1): 21-26. [https://doi.org/10.1016/S1360-1385\(96\)80019-7](https://doi.org/10.1016/S1360-1385(96)80019-7).
6. Demmig-Adams, B. 1998. Survey of thermal energy dissipation and pigment composition in sun and shade leaves. *Plant and Cell Physiology.* 39(5): 474-482.  
<https://doi.org/10.1093/oxfordjournals.pcp.a029394>.
7. Detzel, A.; Wink, M. 1993. Attraction, deterrence or intoxication of bees (*Apis mellifera*) by plant allelochemicals. *Chemoecology.* 4(1): 8-18.  
<https://doi.org/10.1007/BF01245891>.
8. Dirr, M.A. 1998. Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses. 5<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 1,187 p.
9. Eom, S.H.; Senesac, A.F.; Tsontakis-Bradley, I.; Weston, L.A. 2005. Evaluation of herbaceous perennials as weed suppressive groundcovers for use along roadsides or in landscapes. *Journal of Environmental Horticulture.* 23(4): 198-203.  
<https://doi.org/10.24266/0738-2898-23.4.198>.

*Vinca minor*

COMMON PERIWINKLE

10. Fernald, M.L. 1950. Gray's manual of botany. 8<sup>th</sup> ed. New York: American Book Company. 1,632 p.
11. Fryxell, P.M. 1957. Mode of reproduction of higher plants. *Botanical Review*. 23(3): 135-233.  
<https://doi.org/10.1007/BF02869758>.
12. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
13. Grashof-Bokdam, C.J.; Geertsema, W. 1998. The effect of isolation and history on colonization patterns of plant species in secondary woodland. *Journal of Biogeography*. 25(5): 837-846.  
<https://doi.org/10.1046/j.1365-2699.1998.00225.x>.
14. Hasa, D.; Perissutti, B.; Dall'Acqua, S. [and others]. 2013. Rationale of using *Vinca minor* Linné dry extract phytocomplex as a vincamine's oral bioavailability enhancer. *European Journal of Pharmaceutics and Biopharmaceutics*. 84(1): 138-144.  
<http://dx.doi.org/10.1016/j.ejpb.2012.11.025>.
15. Honnay, O.; Hermy, M.; Coppin, P. 1999. Impact of habitat quality on forest plant species colonization. *Forest Ecology and Management*. 115(2-3): 157-170.  
[https://doi.org/10.1016/S0378-1127\(98\)00396-X](https://doi.org/10.1016/S0378-1127(98)00396-X).
16. Huner, N.P.A.; Krol, M.; Williams, J.P.; Maissan, E. 1988. Overwintering periwinkle (*Vinca minor* L.) exhibits increased photosystem I activity. *Plant Physiology*. 87(3): 721-726.  
<https://doi.org/10.1104/pp.87.3.721>.
17. Kurz, D. 1997. Shrubs and woody vines of Missouri. Jefferson City, MO: Missouri Department of Conservation. 387 p.
18. Rayner, M.C. 1926. Mycorrhiza Chapter VII. *New Phytologist*. 25(4): 248-263.  
<https://doi.org/10.1111/j.1469-8137.1926.tb06694.x>.
19. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.
20. Schulz, K.; Thelen, C. 2000. Impact and control of *Vinca minor* L. in an Illinois forest preserve (USA). *Natural Areas Journal*. 20(2): 189-196.  
[http://www.naturalareas.org/docs/87NAJ2002\\_189-196.pdf](http://www.naturalareas.org/docs/87NAJ2002_189-196.pdf).

21. Smittle, D., ed. 2002. Care-free plants: a guide to growing the 200 hardiest low-maintenance, long-living beauties. Pleasantville, NY: The Reader's Digest Association. 352 p.

22. Sotala, D.J.; Kirkpatrick, C.M. 1973. Foods of white-tailed deer, *Odocoileus virginianus*, in Martin County, Indiana. American Midland Naturalist. 89(2): 281-286. <https://doi.org/10.2307/2424033>.

23. Tanaka, N.; Takao, M.; Matsumoto, T. 1995. Vincamine production in multiple shoot culture derived from hairy roots of *Vinca minor*. Plant Cell, Tissue and Organ Culture. 41: 61-64. <https://doi.org/10.1007/BF00124087>.

24. Tatina, R. 2015. Effects on *Trillium recurvatum*, a Michigan threatened species, of applying glyphosate to control *Vinca minor*. Natural Areas Journal. 35(3): 465-467. <https://doi.org/10.3375/043.035.0309>.

25. Verma, P.; Khan, S.A.; Mathur, A.K. [and others]. 2014. Fungal endophytes enhanced the growth and production kinetics of *Vinca minor* hairy roots and cell suspensions grown in bioreactor. Plant, Cell, Tissue, and Organ Culture. 118(2): 257-268. <https://doi.org/10.1007/s11240-014-0478-4>.

26. Wang, Y-Q.; Melzer, R.; Theißen, G. 2011. A double-flowered variety of lesser periwinkle (*Vinca minor* fl. pl.) that has persisted in the wild for more than 160 years. Annals of Botany. 107(9): 1445-1452. <https://doi.org/10.1093/aob/mcr090>.

#### Photograph Information:

Leaves/flowers [UGA1237099]; Flower [UGA1237106]: Dan Tenaglia, Missouriplants.com. Leaves [UGA1237099]: Chris Evans, University of Georgia. Photographs reproduced from [www.invasive.org](http://www.invasive.org).



1. Averill, K.M.; DiTommaso, A.; Mohler, C.L.; Milbrath, L.R. 2011. Survival, growth, and fecundity of the invasive swallowworts (*Vincetoxicum rossicum* and *V. nigrum*) in New York State. *Invasive Plant Science and Management*. 4(2): 198-206.  
<https://doi.org/10.1614/IPSM-D-10-00034.1>.
2. Cappuccino, N. 2004. Allee effect in an invasive alien plant, pale swallow-wort *Vincetoxicum rossicum* (Asclepiadaceae). *Oikos*. 106(1): 3-8.  
<https://doi.org/10.1111/j.0030-1299.2004.12863.x>.
3. Cappuccino, N.; MacKay, R.; Eisner, C. 2002. Spread of the invasive alien vine *Vincetoxicum rossicum*: tradeoffs between seed dispersability and seed quality. *American Midland Naturalist*. 148(2): 263-270.  
[https://doi.org/10.1674/0003-0031\(2002\)148\[0263:SOTIAV\]2.0.CO;2](https://doi.org/10.1674/0003-0031(2002)148[0263:SOTIAV]2.0.CO;2).
4. Casagrande, R.A.; Dacey, J.E. 2007. Monarch butterfly oviposition on swallow-worts (*Vincetoxicum* spp.) *Environmental Entomology*. 36(3): 631-636.  
[https://doi.org/10.1603/0046-225X\(2007\)36\[631:MBOOSV\]2.0.CO;2](https://doi.org/10.1603/0046-225X(2007)36[631:MBOOSV]2.0.CO;2).
5. Cooperrider, T.S. 1995. The Dicotyledoneae of Ohio: part 2. Linaceae through Campanulaceae. Columbus, OH: Ohio University Press. 656 p.
6. DiTommaso, A.; Lawlor, F.M.; Darbyshire, S.J. 2005. The biology of invasive alien plants in Canada. 2. *Cynanchum rossicum* (Kleopow) Borhidi [= *Vincetoxicum rossicum* (Kleopow) Barbar.] and *Cynanchum louiseae* (L.) Kartesz & Gandhi [= *Vincetoxicum nigrum* (L.) Moench]. *Canadian Journal of Plant Science*. 85(1): 243-263.  
<https://doi.org/10.4141/P03-056>.
7. DiTommaso, A.; Losey, J.E. 2003. Oviposition preference and larval performance of monarch butterflies (*Danaus plexippus*) on two invasive swallow-wort species. *Entomologia Experimentalis et Applicata*. 108(3): 205-209.  
<https://doi.org/10.1046/j.1570-7458.2003.00089.x>.
8. DiTommaso, A.; Milbrath, L.R.; Morris, S.H. [and others]. 2017. Seedbank dynamics of two swallowwort (*Vincetoxicum*) species. *Invasive Plant Science and Management*. 10(2): 136-142.  
<https://doi.org/10.1017/inp.2017.10>.

*Vincetoxicum nigrum*  
BLACK SWALLOW-WORT

9. DiTommaso, A.; Stokes, C.A.; Cordeau, S. [and others]. 2018. Seed-dispersal ability of the invasive perennial vines *Vincetoxicum nigrum* and *Vincetoxicum rossicum*. *Invasive Plant Science and Management*. 11(1): 10-19. <https://doi.org/10.1017/inp.2018.8>.
10. Ernst, C.M.; Cappuccino, N. 2005. The effect of an invasive alien vine, *Vincetoxicum rossicum* (Asclepiadaceae), on arthropod populations in Ontario old fields. *Biological Invasions*. 7(3): 417-425. <https://doi.org/10.1007/s10530-004-4062-4>.
11. Fernald, M.L. 1950. Gray's manual of botany. 8<sup>th</sup> ed. New York: American Book Company. 1,632 p.
12. Gibson, D.M.; Vaughan, R.H.; Milbrath, L.R. 2015. Invasive swallow-worts: an allelopathic role for -(-) antofine remains unclear. *Journal of Chemical Ecology*. 41(2): 202-211. <https://doi.org/10.1007/s10886-015-0552-3>.
13. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
14. Greipsson, S.; DiTommaso, A. 2006. Invasive non-native plants alter the occurrence of arbuscular mycorrhizal fungi and benefit from this association. *Ecological Restoration*. 24(4): 236-241. <https://doi.org/10.3368/er.24.4.236>.
15. Leimu, R. 2004. Variation in the mating system of *Vincetoxicum hirundinaria* (Asclepiadaceae) in peripheral island populations. *Annals of Botany*. 93(1): 107-113. <https://dx.doi.org/10.1093%2Faob%2Fmch012>.
16. Lumer, C.; Yost, S.E. 1995. The reproductive biology of *Vincetoxicum nigrum* (L.) Moench (Asclepiadaceae), a Mediterranean weed in New York State. *Bulletin of the Torrey Botanical Club*. 122(1): 15-23. <https://doi.org/10.2307/2996399>.
17. Magidow, L.C.; DiTommaso, A.; Ketterings, Q.M. [and others]. 2013. Emergence and performance of two invasive swallowworts (*Vincetoxicum* spp.) in contrasting soil types and soil pH. *Invasive Plant Science and Management*. 6(2): 281-291. <https://doi.org/10.1614/IPSM-D-12-00073.1>.
18. Mattila, H.R.; Otis, G.W. 2003. A comparison of the host preference of monarch butterflies (*Danaus plexippus*) for milkweed (*Asclepias syriaca*) over dog-

strangler vine (*Vincetoxicum rossicum*). *Entomologia Experimentalis et Applicata*. 107(3): 193-199. <https://doi.org/10.1046/j.1570-7458.2003.00049.x>.

19. Milbrath, L.R. 2008. Growth and reproduction of invasive *Vincetoxicum rossicum* and *V. nigrum* under artificial defoliation and different light environments. *Botany*. 86: 1279-1290. <https://doi.org/10.1139/B08-092>.

20. Milbrath, L.R.; Davis, A.S.; Biazzo, J. 2017. Demography of invasive black and pale swallow-wort populations in New York. *Northeastern Naturalist*. 24(1): 37-53. <https://doi.org/10.1656/045.024.0104>.

21. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

22. Sheeley, S.E.; Raynal, D.J. 1996. The distribution and status of species of *Vincetoxicum* in Eastern North America. *Bulletin of the Torrey Botanical Club*. 123(2): 148-156. <https://doi.org/10.2307/2996072>.

23. Weed, A.S.; Gassmann, A.; Leroux, A.M.; Casagrande, R.A. 2011. Performance of potential European biological control agents of *Vincetoxicum* spp. with notes on their distribution. *Journal of Applied Entomology*. 135(9): 700-713. <https://doi.org/10.1111/j.1439-0418.2010.01594.x>.

24. Weston, L.A.; Barney, J.N.; DiTommaso, A. 2005. A review of the biology and ecology of three invasive perennials in New York State: Japanese knotweed (*Polygonum cuspidatum*), mugwort (*Artemisia vulgaris*) and pale swallow-wort (*Vincetoxicum rossicum*). *Plant and Soil*. 277(1): 53-69. <https://doi.org/10.1007/s11104-005-3102-x>.

25. Winston, R.L.; Randall, C.B.; Blossey, B. [and others]. 2017. Swallow-worts. In: *Field guide for the biological control of weeds in Eastern North America*. FHTET-201604. Morgantown, WV: U.S. Department of Agriculture, Forest Service, Forest Health Technology Enterprise Team: 74-79. [https://www.fs.fed.us/foresthealth/technology/pdfs/FHTET-2016-04\\_Biocontrol\\_Field\\_Guide.pdf](https://www.fs.fed.us/foresthealth/technology/pdfs/FHTET-2016-04_Biocontrol_Field_Guide.pdf).

### Photograph Information:

Plant/leaves [UGA5452116]; Fruit [UGA5452245]; Seed [UGA5452239]: Leslie J. Mehrhoff, University of Connecticut. Flower/leaves [UGA5571478]: Ansel Oommen, Bugwood.org. Photographs reproduced from [www.invasive.org](http://www.invasive.org).



1. D'Appollonio, J. 2006. Regeneration strategies of Japanese barberry (*Berberis thunbergii* DC) in coastal forests of Maine. Orono, ME: University of Maine. 93 p. M.S. thesis.  
<https://digitalcommons.library.umaine.edu/etd/433/>.
2. Davis, O.H. 1927. Germination and early growth of *Cornus florida*, *Sambucus canadensis*, and *Berberis thunbergii*. The Botanical Gazette. 84(3): 225-263.  
<https://www.jstor.org/stable/2470586>.
3. Dirr, M.A. 1998. Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses. 5<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 1,187 p.
4. Ehrenfeld, J.G. 1997. Invasion of deciduous forest preserves in the New York metropolitan region by Japanese barberry (*Berberis thunbergii* DC.). Journal of the Torrey Botanical Society. 124(2): 210-215.  
<https://doi.org/10.2307/2996586>.
5. Ehrenfeld, J.G. 1999. Structure and dynamics of populations of Japanese barberry (*Berberis thunbergii* DC.) in deciduous forests of New Jersey. Biological Invasions. 1(2-3): 203-213.  
<https://doi.org/10.1023/A:1010066810897>.
6. Ehrenfeld, J.G.; Kourtev, P.; Huang, W. 2001. Changes in soil functions following invasions of exotic understory plants in deciduous forests. Ecological Applications. 11(5): 1287-1300.  
[https://doi.org/10.1890/1051-0761\(2001\)011\[1287:CIF\]2.0.CO;2](https://doi.org/10.1890/1051-0761(2001)011[1287:CIF]2.0.CO;2).
7. Fernald, M.L. 1950. Gray's manual of botany. 8<sup>th</sup> ed. New York: American Book Company. 1,632 p.
8. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
9. Keet, J.-H.; Cindi, D.D.; du Preez, P.J. 2016. Assessing the invasiveness of *Berberis aristata* and *B. julianae* (Berberidaceae) in South Africa: Management options and legal recommendations. South African Journal of Botany. 105: 288-298.  
<https://doi.org/10.1016/j.sajb.2016.04.012>.
10. Kourtev, P.S.; Ehrenfeld, J.G.; Huang, W.Z. 1998. Effects of exotic plant species on soil properties in

***Berberis thunbergii***  
**JAPANESE BARBERRY**

hardwood forests of New Jersey. Water, Air, and Soil Pollution. 105: 493-501.  
<https://doi.org/10.1023/A:1005037105499>.

11. Kourtev, P.S.; Huang, W.Z.; Ehrenfeld, J.G. 1999. Differences in earthworm densities and nitrogen dynamics in soils under exotic and native plant species. *Biological Invasions*. 1: 237-245.  
<https://doi.org/10.1023/A:1010048909563>.

12. Kurz, D. 1997. Shrubs and woody vines of Missouri. Jefferson City, MO: Missouri Department of Conservation. 387 p.

13. Lebuhn, G.; Anderson, G.J. 1994. Anther tripping and pollen dispensing in *Berberis thunbergii*. *American Midland Naturalist*. 131(2): 257-265.  
<https://doi.org/10.2307/2426251>.

14. Lehrer, J.M.; Brand, M.H.; Lubell, J.D. 2006a. Four cultivars of Japanese barberry demonstrate differential reproductive potential under landscape conditions. *HortScience*. 41(3): 762-767.  
<https://doi.org/10.21273/HORTSCI.41.3.762>.

15. Lehrer, J.M.; Brand, M.H.; Lubell, J.D. 2006b. Seedling populations produced by colored-leaf genotypes of Japanese barberry (*Berberis thunbergii* DC.) contain seedlings with green leaf phenotype. *Journal of Environmental Horticulture*. 24(3): 133-136.  
<https://doi.org/10.24266/0738-2898-24.3.133>.

16. Lehrer, J.M.; Brand, M.H. 2010. Purple-leaved Japanese barberry (var. *atropurpurea*) genotypes become visually indistinguishable from green-leaved genotypes (*Berberis thunbergii* DC.) at low light levels. *Journal of Environmental Horticulture*. 28(3): 187-189. <https://doi.org/10.24266/0738-2898-28.3.187>.

17. Lubell, J.D.; Brand, M.H.; Lehrer, J.M. 2008a. AFLP identification of *Berberis thunbergii* cultivars, inter-specific hybrids, and their parental species. *Journal of Horticultural Science and Biotechnology*. 83(1): 55-63.  
<https://doi.org/10.1080/14620316.2008.11512347>.

18. Lubell, J.D.; Brand, M.H.; Lehrer, J.M.; Holsinger, K.E. 2008b. Detecting the influence of ornamental *Berberis thunbergii* var. *atropurpurea* in invasive populations of *Berberis thunbergii* (Berberidaceae) using AFLP. *American Journal of Botany*. 95(6): 700-705. <https://doi.org/10.3732/ajb.2007336>.

19. Lubell, J.D.; Brand, M.H.; Lehrer, J.M.; Holsinger, K.E. 2009. Amplified fragment length polymorphism and parentage analysis of a feral barberry (*Berberis thunbergii* DC.) population to determine the contribution of an ornamental landscape genotype. *HortScience*. 44(2): 392-395.  
<https://doi.org/10.21273/HORTSCI.44.2.392>.

20. Macior, L.W. 1968. *Bombus* (Hymenoptera, Apidae) queen foraging in relation to vernal pollination in Wisconsin. *Ecology*. 49(1): 20-25.  
<https://doi.org/10.2307/1933556>.

21. Magee, D.W.; Ahles, H.A. 1999. The flora of the Northeast: a manual of the vascular flora of New England and adjacent New York. Amherst, MA: University of Massachusetts Press. 1,248 p.

22. Moringa, T. 1926. Effect of alternating temperatures upon the germination of seeds. *American Journal of Botany*. 13(2): 141-158.  
<https://doi.org/10.2307/2435354>.

23. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

24. Silander, J.A.; Klepeis, D.M. 1999. The invasion ecology of Japanese barberry (*Berberis thunbergii*) in the New England landscape. *Biological Invasions*. 1(2-3): 189-201. <https://doi.org/10.1023/A:1010024202294>.

25. Symonds, G.W. 1963. The shrub identification book. New York: William Morrow and Company. 379 p.

26. Sweetman, H.L. 1944. Selection of woody plants as winter food by the cottontail rabbit. *Ecology*. 25(4): 467-472. <https://doi.org/10.2307/1932022>.

27. Ward, J.; Williams, S. 2011. Controlling an invasive shrub, Japanese barberry (*Berberis thunbergii* DC), using directed heating with propane torches. *Natural Areas Journal*. 31(2): 156-162.  
<https://doi.org/10.3375/043.031.0208>.

28. Williams, S.C.; Ward, J.S. 2010. Effects of Japanese barberry (Ranunculales: Berberidaceae) removal and resulting microclimatic changes on *Ixodes scapularis* (Acari: Ixodidae) abundances in Connecticut, USA. *Environmental Entomology*. 39(6): 1911-1921.  
<https://doi.org/10.1603/en10131>.

***Berberis thunbergii***  
**JAPANESE BARBERRY**

29. Williams, S.C.; Linske, M.A.; Ward, J.S. 2017. Long-term effects of *Berberis thunbergii* (Ranunculales: Berberidaceae) management on *Ixodes scapularis* (Acari: Ixodidae) abundance and *Borrelia burgdorferi* (Spirochaetales: Spirochaetaceae) prevalence in Connecticut, USA. *Environmental Entomology*. 46(6): 1329-1338. <https://doi.org/10.1093/ee/nvx146>.

**Photograph Information:**

Plant [UGA0580076]: Jill Swearingen, USDI National Park Service. Leaves and flowers [UGA5270035]: Leslie J. Mehrhoff, University of Connecticut. Fruit [UGA1237080]: Barry Rice, sarracenia.com. Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Baer, S.G.; Church, J.M.; Willard, K.W.J.; Groninger, J.W. 2006. Changes in intrasystem N cycling from N<sub>2</sub>-fixing shrub encroachment in grassland: multiple positive feedbacks. *Agriculture Ecosystems and Environment*. 115(1-4): 174-182.  
<https://doi.org/10.1016/j.agee.2006.01.004>.
2. Baskin, C.C.; Baskin, J.M. 2001. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, CA: Academic Press. 666 p.
3. Brym, Z.T.; Lake, J.K.; Allen, D.; Ostling, A. 2011. Plant functional traits suggest novel ecological strategy for an invasive shrub in an understorey woody plant community. *Journal of Applied Ecology*. 48(5): 1098- 1106. <https://doi.org/10.1111/j.1365-2664.2011.02049.x>.
4. Carpenter, P.L.; Hensley, D.L. 1979. Utilizing N<sub>2</sub>-fixing woody plant species for distressed soils and the effect of lime on survival. *Botanical Gazette*. 140(Supplement): S76-S81.  
<https://www.journals.uchicago.edu/doi/abs/10.1086/337039?journalCode=botanicalgazette>.
5. Carter, C.T.; Ungar, I.A. 2002. Aboveground vegetation, seed bank and soil analysis of a 31-year-old forest restoration on coal mine spoil in southeastern Ohio. *American Midland Naturalist*. 147(1): 44-59. [https://doi.org/10.1674/0003-0031\(2002\)147\[0044:AVSBAS\]2.0.CO;2](https://doi.org/10.1674/0003-0031(2002)147[0044:AVSBAS]2.0.CO;2).
6. Dirr, M.A. 2003. Dirr's hardy trees and shrubs: an illustrated encyclopedia. Portland, OR: Timber Press. 493 p.
7. Dirr, M.A. 1998. Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses. 5th ed. Champaign, IL: Stipes Publishing LLC. 1,187 p.
8. Emery, S.M.; Uwimbabazi, J.; Flory, S.L. 2011. Fire intensity effects on seed germination of native and invasive Eastern deciduous forest understory plants. *Forest Ecology and Management*. 261(8): 1401-1408.  
<https://doi.org/10.1016/j.foreco.2011.01.024>.
9. Fordham, I.M.; Clevidence, B.A.; Wiley, E.R.; Zimmerman, R.H. 2001. Fruit of autumn olive: a rich source of lycopene. *Hortscience*. 36(6): 1136-1137.  
<https://doi.org/10.21273/HORTSCI.36.6.1136>.

## *Elaeagnus umbellata*

### AUTUMN OLIVE

10. Funk, D.T.; Schlesinger, R.C.; Ponder, F., Jr. 1979. Autumn-olive as a nurse plant for black walnut. *Botanical Gazette*. 140(Supplement): S110 S114. <https://www.jstor.org/stable/2474214>.
11. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2nd ed. Bronx, NY: The New York Botanical Garden. 910 p.
12. Huss-Danell, K. 1997. Tansley Review No. 93. Actinorhizal symbioses and their N<sub>2</sub> fixation. *New Phytologist*. 136(3): 375-405. <https://doi.org/10.1046/j.1469-8137.1997.00755.x>.
13. Katz, G.L.; Shafrroth, P.B. 2003. Biology, ecology and management of *Elaeagnus angustifolia* L. (Russian olive) in Western North America. *Wetlands*. 23(4): 763-777.
14. Kohri, M.; Kamada, M.; Yuuki, T. [and others]. 2002. Expansion of *Elaeagnus umbellata* on a gravel bar in the Naka River, Shikoku, Japan. *Plant Species Biology*. 17(1): 25-36. <http://dx.doi.org/10.1046/j.1442-1984.2002.00071.x>.
15. Kurz, D. 1997. Shrubs and woody vines of Missouri. Jefferson City, MO: Missouri Department of Conservation. 387 p.
16. Naumann, J.C.; Bissett, S.N.; Young, D.R. [and others]. 2010. Diurnal patterns of photosynthesis, chlorophyll fluorescence, and PRI to evaluate water stress in the invasive species, *Elaeagnus umbellata* Thunb. *Trees*. 24(2): 237-245. <https://doi.org/10.1007/s00468-009-0394-0>.
17. Orr, S.P.; Rudgers, J.A.; Clay, K. 2005. Invasive plants can inhibit native tree seedlings: testing potential allelopathic mechanisms. *Plant Ecology*. 181(2): 153-165. <https://doi.org/10.1007/s11258-005-5698-6>.
18. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.
19. Ribeiro, A.; Graca, I.; Pawłowski, K.; Santos, P. 2011. Actinorhizal plant defence-related genes in response to symbiotic *Frankia*. *Functional Plant Biology*. 38(8-9): 639-644. <http://dx.doi.org/10.1071/FP11012>.
20. Shannon-Firestone, S.; Firestone, J. 2015. Allelopathic potential of invasive species is determined by plant and soil community contact. *Plant Ecology*. 216(3): 491-502. <https://doi.org/10.1007/s11258-015-0453-0>.

21. Suthers, H.B.; Bickal, J.M.; Rodewald, P.G. 2000. Use of successional habitat and fruit resources by songbirds during autumn migration in central New Jersey. *The Wilson Bulletin*. 112(2): 249-260.  
[https://doi.org/10.1676/0043-5643\(2000\)112\[0249:UOSHAF\]2.0.CO;2](https://doi.org/10.1676/0043-5643(2000)112[0249:UOSHAF]2.0.CO;2).

22. Tjepkema, J.D.; Winship, L.J. 1980. Energy requirement for nitrogen fixation in actinorhizal and legume root nodules. *Science*. 209 (4,453): 279-281.  
<https://doi.org/10.1126/science.7384801>.

23. U.S. Department of Agriculture, Natural Resources Conservation Service. 2021. The PLANTS Database. Greensboro, NC: National Plant Data Team.  
<http://plants.usda.gov>. [23 June 2021].

**Photograph Information:**

Shrub with flowers [UGA5455510]; Leaves with flowers [UGA5455374]; Fruits [UGA5455411]: Leslie J. Mehrhoff, University of Connecticut. Stem with thorn [UGA2307059]: James H. Miller, USDA Forest Service. Flower [UGA5476902]: Chris Evans, University of Illinois. Photographs reproduced from [www.invasive.org](http://www.invasive.org).



1. Behnke, G.; Ebinger, J.E. 1989. Woody invasion of glacial drift hill prairies in east-central Illinois. *Transactions of the Illinois Academy of Science.* 82(1/2): 1-4.
2. Bowen, W.R. 1963. Origin and development of winged cork in *Euonymus alatus*. *Botanical Gazette.* 124(4): 256-261.  
<https://www.jstor.org/stable/2472906>.
3. Brand, M.H.; Lubell, J.D.; Lehrer, J.M. 2012. Fecundity of winged euonymus cultivars and their ability to invade various natural environments. *HortScience.* 47(8): 1029-1033.  
<https://doi.org/10.21273/HORTSCI.47.8.1029>.
4. Chen, Y.; Lu, L.; Duan, H. [and others]. 2008. Biotech approach to neutralize the invasiveness of burning bush (*Euonymus alatus*), a progress report on development of its genetic transformation system and functional analysis of sterile genes. *Acta Horticulture.* 769: 21-29.  
<http://dx.doi.org/10.17660/ActaHortic.2008.769.1>.
5. Choi, C.-I.; Lee, S.R.; Kim, K.H. 2015. Antioxidant and  $\alpha$ -glucosidase inhibitory activities of constituents from *Euonymus alatus* twigs. *Industrial Crops and Products.* 76: 1055-1060.  
<https://doi.org/10.1016/j.indcrop.2015.08.031>.
6. Chong, C. 1999. Rooting of deciduous woody stem cuttings in peat- and perlite-amended MSW compost media. *Compost Science and Utilization.* 7(4): 6-14.  
<https://doi.org/10.1080/1065657X.1999.10701979>.
7. Dirr, M.A. 2003. Dirr's hardy trees and shrubs: an illustrated encyclopedia. Portland, OR: Timber Press. 493 p.
8. Dirr, M.A. 1998. Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses. 5<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 1,187 p.
9. Drew, J.; Anderson, N.; Andow, D. 2010. Conundrums of a complex vector for invasive species control: a detailed examination of the horticultural industry. *Biological Invasions.* 12(8): 2837-2851.  
<https://doi.org/10.1007/s10530-010-9689-8>.

*Euonymus alatus*  
WINGED BURNING BUSH

10. Ebinger, J.; Newman, J.; Nyboer, R. 1984. Naturalized winged wahoo in Illinois. *Natural Areas Journal*. 4(2): 26-29. <https://www.jstor.org/stable/43910779>.
11. Egler, F.E. 1983. The nature of naturalization II. *Studies in naturalization: 1925-1980. The introduced flora of Aton Forest, Connecticut*. Claude E. Phillips Herbarium Publication no. 6. Dover, DE: Delaware State College. 145 p.
12. Frankel, E. 1999. A floristic survey of vascular plants of the Bronx River Parkway Reservation in Westchester, New York: Compilation 1973-1998. *Journal of the Torrey Botanical Society*. 126(4): 359-366. <https://doi.org/10.2307/2997321>.
13. Frei, K.R.; Fairbrothers, D.E. 1963. Floristic study of the William L. Hutcheson Memorial Forest (New Jersey). *Bulletin of the Torrey Botanical Club*. 90(5): 338-355. <https://doi.org/10.2307/2483046>.
14. Gleason, H.A.; Cronquist, A. 1993. *Manual of vascular plants of Northeastern United States and adjacent Canada*. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
15. He, L.; Lu, S.-M.; Pan, Y.-J.; Chen, Y.Z. 2000. Study on the chemical constituents of *Euonymus alatus* (Thunb.) Sleb. *Journal of Zhejiang University-Science A: Applied Physics & Engineering*. 1(2): 188-189.
16. Ingram, D.L.; Zimet, D.; Still, S.; Kuhns, L.J. 1989. Production of pre-finished northern woody plants in Florida. *Journal of Environmental Horticulture*. 7(2): 65-68. <https://doi.org/10.24266/0738-2898-7.2.65>.
17. Jackson, N.; Campanini, J.T. 1975. A dieback of *Euonymus alatus* caused by *Whetzelinia sclerotiorum*. *Plant Disease Reporter*. 59(4): 310-311.
18. Kim, K.H.; Ha, S.K.; Choi, S.U. [and others]. 2013. Phenolic constituents from the twigs of *Euonymus alatus* and their cytotoxic and anti-inflammatory activity. *Planta Medica*. 79(5): 361-364. <https://doi.org/10.1055/s-0032-1328286>.
19. Kitanaka, S.; Takido, M.; Mizoue, K.; Nakaike, S. 1996. Cytotoxic cardenolides from woods of *Euonymus alata*. *Chemical Pharmaceutical Bulletin*. 44(3): 615-617. <https://doi.org/10.1248/cpb.44.615>.

20. Kurz, D. 1997. Shrubs and woody vines of Missouri. Jefferson City, MO: Missouri Department of Conservation. 387 p.

21. Lancaster, A.L.; Deyton, D.E.; Sams, C.E. [and others]. 2002. Soybean oil controls two-spotted spider mites on burning bush. *Journal of Environmental Horticulture*. 20(2): 86-92.  
<https://doi.org/10.24266/0738-2898-20.2.86>.

22. Lee, T.-K.; Kim, D.-I.; Han, J.Y.; Kim, C.-H. 2004. Inhibitory effects of *Scutellaria barbata* D. Don. and *Euonymus alatus* Sieb. on aromatase activity of human leiomyomal cells. *Immunopharmacology and Immunotoxicology*. 26(3): 315-327.  
<https://doi.org/10.1081/iph-200026840>.

23. Miller, James H. 2003. Nonnative invasive plants of southern forests: a field guide for identification and control. Gen. Tech. Rep. SRS-62. Asheville, NC: U.S. Department of Agriculture, Forest Service, Southern Research Station. 93 p.  
[https://www.srs.fs.usda.gov/pubs/gtr/gtr\\_srs062/](https://www.srs.fs.usda.gov/pubs/gtr/gtr_srs062/).

24. Profous, G.V.; Loeb, R.E. 1984. Vegetation and plant communities of Van Cortlandt Park, Bronx, New York. *Bulletin of the Torrey Botanical Club*. 111(1): 80-89.  
<https://doi.org/10.2307/2996215>.

25. Ranney, T.G.; Eaker, T.A.; Mowrey, J.A. 2007. Assessing fertility among cultivars of winged euonymus. In: *Proceedings of the Southern Nursery Association Research Conference*. 52: 352-354.  
<https://mcilab.ces.ncsu.edu/wp-content/uploads/2017/12/ranney-etal-SNA-2007a.pdf?fwd=no>.

26. Rhoads, A.F.; Block, T.A. 2000. *The plants of Pennsylvania: an illustrated manual*. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

27. Smith, C.C.; Jernstedt, J.A. 1989. In vitro development of adventitious shoots in *Euonymus alatus* (Celastraceae). *Scientia Horticulturae*. 41(1-2): 161-169.  
[https://doi.org/10.1016/0304-4238\(89\)90060-5](https://doi.org/10.1016/0304-4238(89)90060-5).

28. Thammina, C.; He, M.; Lu, L. [and others]. 2011. In vitro regeneration of triploid plants of *Euonymus alatus* 'Compactus' (burning bush) from endosperm tissues. *HortScience*. 46(8): 1141-1147.  
<https://doi.org/10.21273/HORTSCI.46.8.1141>.

***Euonymus alatus***

**WINGED BURNING BUSH**

29. Thammina, C.; He, M.; Yu, H. [and others]. 2012. Continuous biosynthesis of abscisic acid (ABA) may be required for maintaining dormancy of isolated embryos and intact seeds of *Euonymus alatus*. *Plant Cell Tissue and Organ Culture*. 108(3): 493-500. <http://dx.doi.org/10.1007/s11240-011-0063-z>.

30. Wheeler, A.G., Jr.; Stimmel, J.F. 1979. Bean aphid on ornamental Euonymus seasonal history and damage. *Melsheimer Entomology Series*. 27: 26-29.

**Photograph Information:**

Fall foliage [UGA5457793]; Flowers and leaves [UGA5457575]; Fruit, leaves, winged stems [UGA5510235]: Leslie Mehrhoff, University of Connecticut. Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Baskin, C.C.; Baskin, J.M. 2001. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, CA: Academic Press. 666 p.
2. Brown, C.E.; Pezeshki, S.R. 2000. A study on waterlogging as a potential tool to control *Ligustrum sinense* populations in western Tennessee. *Wetlands*. 20(3): 429-437.
3. Butz Huryn, V.M.; Moller, H. 1995. An assessment of the contribution of honey bees (*Apis mellifera*) to weed reproduction in New Zealand protected natural areas. *New Zealand Journal of Ecology*. 19(2): 111-122. [www.jstor.org/stable/24054429](http://www.jstor.org/stable/24054429).
4. Dirr, M.A. 1998. Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses. 5<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 1,187 p.
5. Dirr, M.A. 2002. Dirr's trees and shrubs for warm climates: an illustrated encyclopedia. Portland, OR: Timber Press. 446 p.
6. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
7. Greipsson, S.; DiTommaso, A. 2006. Invasive non-native plants alter the occurrence of arbuscular mycorrhizal fungi and benefit from this association. *Ecological Restoration*. 24(4): 236-241. <http://dx.doi.org/10.3368/er.24.4.236>.
8. Hagan, D.L.; Mikhailova, E.A.; Shearman, T.M. [and others]. 2014. The role of soil and landscape factors in Chinese privet (*Ligustrum sinense*) invasion in the Appalachian Piedmont. *Invasive Plant Science and Management*. 7(3): 483-490. <http://dx.doi.org/10.1614/IPSM-D-14-00002.1>.
9. Hanula, J.L.; Horn, S. 2011. Removing an exotic shrub from riparian forests increases butterfly abundance and diversity. *Forest Ecology and Management*. 262(4): 674-680. <https://doi.org/10.1016/j.foreco.2011.04.040>.
10. Langland, K.A.; Cherry, H.M.; McCormick, C.M.; Craddock Burks, K.A. 2008. Identification and biology of nonnative plants in Florida. SP 257. Gainesville, FL: University of Florida, Institute of Food and Agricultural Science. 210 p.

***Ligustrum sinense***

**CHINESE PRIVET**

11. Lobe, J.W.; Callaham, M.A., Jr.; Hendrix, P.F.; Hanula, J.L. 2014. Removal of an invasive shrub (Chinese privet: *Ligustrum sinense* Lour) reduces exotic earthworm abundance and promotes recovery of native North American earthworms. *Applied Soil Ecology*. 83: 133-139.  
<https://doi.org/10.1016/j.apsoil.2014.03.020>.
12. Maddox, V.; Byrd, J., Jr.; Serviss, B. 2010. Identification and control of invasive privets (*Ligustrum* spp.) in the Middle Southern United States. *Invasive Plant Science and Management*. 3(4): 482-488.  
<https://doi.org/10.1614/IPSM-D-09-00060.1>.
13. Mitchell, J.D.; Lockaby, B.G.; Brantley, E.F. 2011. Influence of Chinese privet (*Ligustrum sinense*) on decomposition and nutrient availability in riparian forests. *Invasive Plant Science and Management*. 4(4): 437-447. <https://doi.org/10.1614/IPSM-D-11-00020.1>.
14. Morris, L.L.; Walck, J.L.; Hidayati, S.N. 2002. Growth and reproduction of the invasive *Ligustrum sinense* and native *Forestiera ligustrina* (Oleaceae): implications for the invasion and persistence of a nonnative shrub. *International Journal of Plant Science*. 163(6): 1001-1010.  
<https://doi.org/10.1086/342632>.
15. Nesom, G.L. 2009. Taxonomic overview of *Ligustrum* (Oleaceae) naturalized in North America north of Mexico. *Phytologia*. 91(3): 467-482.  
<http://www.guynesom.com/LigustrumOverview.pdf>.
16. Panetta, F.D. 2000. Fates of fruits and seeds of *Ligustrum lucidum* W.T.Ait. and *L. sinense* Lour. maintained under natural rainfall or irrigation. *Australian Journal of Botany*. 48(6): 701-706.  
<http://dx.doi.org/10.1071/BT00005>.
17. Rhoads, A.F.; Block, T.A. 2000. *The plants of Pennsylvania: an illustrated manual*. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.
18. Small, J.K. 1933. *Manual of the Southeastern flora: being descriptions of the seed plants growing naturally in Florida, Alabama, Mississippi, eastern Louisiana, Tennessee, North Carolina, South Carolina and Georgia*. Chapel Hill, NC: University of North Carolina Press. 2 parts.

19. Stromayer, K.A.K.; Warren, R.J.; Johnson, A.S. [and others]. 1998. Chinese privet and the feeding ecology of white-tailed deer: the role of an exotic plant. *Journal of Wildlife Management*. 62(4): 1321-1329. <https://doi.org/10.2307/3801997>.

20. Ulyshen, M.D.; Horn, S.; Hanula J.L. 2020. Response of beetles (Coleoptera) at three heights to the experimental removal of an invasive shrub, Chinese privet (*Ligustrum sinense*), from floodplain forests. *Biological Invasions*. 12(6): 1573-1579. <http://dx.doi.org/10.1007/s10530-009-9569-2>.

21. Wang, H.-H.; Grant, W.E. 2012. Determinants of Chinese and European privet (*Ligustrum sinense* and *Ligustrum vulgare*) invasion and likelihood of further invasion in Southern U.S. forestlands. *Invasive Plant Science and Management*. 5(4): 454-463. <http://dx.doi.org/10.1614/IPSM-D-12-00038.1>.

22. Webster, C.R.; Jenkins, M.A.; Jose, S. 2006. Woody invaders and the challenges they pose to forest ecosystems in the Eastern United States. *Journal of Forestry*. 104(7): 366-374. <https://academic.oup.com/jof/article/104/7/366/4598738>.

23. Westoby, M.; Dalby, J.; Acton-Adams, L. 1983. Fruit production by two species of privet, *Ligustrum sinense* Lour. and *L. lucidum* W.T. Ait., in Sydney. *Australian Weeds*. 2(4): 127-129. <https://caws.org.nz/PPQ/AuW%2002-4%20pp127-129%20Westoby.pdf>.

24. Williams, P.A.; Karl, B.J.; Bannister, P.; Lee, W.G. 2000. Small mammals as potential seed dispersers in New Zealand. *Austral Ecology*. 25(5): 523-532. <https://doi.org/10.1046/j.1442-9993.2000.01078.x>.

25. Williams, P.A.; Karl, B.J. 1996. Fleshy fruits of indigenous and adventive plants in the diet of birds in forest remnants, Nelson, New Zealand. *New Zealand Journal of Ecology*. 20(2): 127-145. <https://www.researchgate.net/publication/242772149>.

26. Wilson, S.B.; Knox, G.W.; Nolan, K.L.; Aldrich, J. 2014. Landscape performance and fruiting of 12 privet selections grown in northern and southern Florida. *HortTechnology*. 24(1): 148-155. <http://dx.doi.org/10.21273/HORTTECH.24.1.148>.

***Ligustrum sinense***

**CHINESE PRIVET**

27. Zhang, Y.; Hanula, J.L.; Horn, S. [and others]. 2011. Biology of *Leptoypha hospita* (Hemiptera: Tingidae), a potential biological control agent of Chinese privet. *Annals of the Entomological Society of America*. 104(6): 1327-1333. <https://doi.org/10.1603/AN11042>.

28. Zhang, Y.; Hanula, J.L.; O'Brien, J. [and others]. 2013. Evaluation of the impacts of herbivory by lace bugs on Chinese privet (*Ligustrum sinense*) survival and physiology. *Biological Control*. 64(3): 299-304. <https://doi.org/10.1016/j.biocontrol.2012.12.003>.

**Photograph Information:**

Leaves [UGA5079012]: Troy Evans, Great Smoky Mountains National Park. Flowers [UGA2188053]: Chris Evans, University of Illinois. Fruit [UGA5408393]: Karan A. Rawlins, University of Georgia. Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Allan, B.F.; Dutra, H.P.; Goessling, L.S. [and others]. 2010. Invasive honeysuckle eradication reduces tick-borne disease risk by altering host dynamics. *Proceedings of the National Academy of Sciences of the United States of America*. 107(43): 18,523-18,527. <https://doi.org/10.1073/pnas.1008362107>.
2. Bartuszevige, A.M.; Gorchov, D.L. 2006. Avian seed dispersal of an invasive shrub. *Biological Invasions*: 8(5): 1013-1022. <https://doi.org/10.1007/s10530-005-3634-2>.
3. Baskin, C.C.; Baskin, J.M. 2001. *Seeds: ecology, biogeography, and evolution of dormancy and germination*. San Diego, CA: Academic Press. 666 p.
4. Boyce, R.L.; Brossart, S.N.; Bryant, L.A. [and others]. 2014. The beginning of the end? Extensive dieback of an open-grown Amur honeysuckle stand in northern Kentucky, USA. *Biological Invasions*. 16(10): 2017-2023. <https://doi.org/10.1007/s10530-014-0656-7>.
5. Boyce, R.L.; Durtsche, R.D.; Fugal, S.L. 2012. Impact of the invasive shrub *Lonicera maackii* on stand transpiration and ecosystem hydrology in a wetland forest. *Biological Invasions*. 14(3): 671-680. <http://dx.doi.org/10.1007/s10530-011-0108-6>.
6. Braun, E.L. 1989. *The woody plants of Ohio: trees, shrubs and woody climbers native, naturalized, and escaped*. Columbus, OH: Ohio State University Press. 362 p.
7. Castellano, S.M.; Gorchov, D.L. 2013. White-tailed deer (*Odocoileus virginianus*) disperse seeds of the invasive shrub, Amur honeysuckle (*Lonicera maackii*). *Natural Areas Journal*. 33(1): 78-80. <http://dx.doi.org/10.3375/043.033.0109>.
8. Cipollini, D.; Stevenson, R.; Enright, S. [and others]. 2008. Phenolic metabolites in leaves of the invasive shrub, *Lonicera maackii*, and their potential phytotoxic and anti-herbivore effects. *Journal of Chemical Ecology*. 34(2): 144-152. <http://dx.doi.org/10.1007/s10886-008-9426-2>.
9. Custer, K.W.; Borth, E.B.; Mahoney, S.D.; McEwan, R.W. 2017. Lethal and sublethal effects of novel terrestrial subsidies from an invasive shrub (*Lonicera maackii*) on stream macroinvertebrates. *Freshwater Science*. 36(4): 750-759. <http://dx.doi.org/10.1086/694895>.

***Lonicera maackii*  
AMUR HONEYSUCKLE**

10. Deering, R.H.; Vankat, J.L. 1999. Forest colonization and developmental growth of the invasive shrub *Lonicera maackii*. *American Midland Naturalist*. 141(1): 43-50. [https://doi.org/10.1674/0003-0031\(1999\)141\[0043:FCADGO\]2.0.CO;2](https://doi.org/10.1674/0003-0031(1999)141[0043:FCADGO]2.0.CO;2).
11. Demars, B.G.; Boerner, R.E.J. 1997. Foliar nutrient dynamics and resorption in naturalized *Lonicera maackii* (Caprifoliaceae) populations in Ohio, USA. *American Journal of Botany*. 84(1): 112-117. <https://doi.org/10.2307/2445888>.
12. Dirr, M.A. 1998. *Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses*. 5<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 1,187 p.
13. Dorning, M.A.; Cipollini, D. 2006. Leaf and root extracts of the invasive shrub, *Lonicera maackii*, inhibit seed germination of three herbs with no autotoxic effects. *Plant Ecology*. 184(2): 287-296. <http://dx.doi.org/10.1007/s11258-005-9073-4>.
14. Dutra, H.P.; Barnett, K.L.; Reinhardt, J.R. [and others]. 2011. Invasive plant species alters consumer behavior by providing refuge from predation. *Oecologia*. 166(3): 649-657. <http://dx.doi.org/10.1007/s00442-010-1895-7>.
15. Fargen, C.; Emery, S.M.; Carreiro, M.M. 2015. Influence of *Lonicera maackii* invasion on leaf litter decomposition and macroinvertebrate communities in an urban stream. *Natural Areas Journal*. 35(3): 392-403. <https://doi.org/10.3375/043.035.0303>.
16. Gleason, H.A.; Cronquist, A. 1993. *Manual of vascular plants of Northeastern United States and adjacent Canada*. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
17. Goodell, K.; McKinney, A.M.; Lin, C.-H. 2010. Pollen limitation and local habitat-dependent pollinator interactions in the invasive shrub *Lonicera maackii*. *International Journal of Plant Sciences*. 171(1): 63-72. <http://dx.doi.org/10.1086/647921>.
18. Gorchov, D.L.; Trisel, D.E. 2003. Competitive effects of the invasive shrub, *Lonicera maackii* (Rupr.) Herder (Caprifoliaceae), on the growth and survival of native tree seedlings. *Plant Ecology*. 166(1): 13-24. <http://dx.doi.org/10.1023/A:1023208215796>.

19. Gould, A.M.A.; Gorchov, D.L. 2000. Effects of the exotic invasive shrub *Lonicera maackii* on the survival and fecundity of three species of native annuals. *American Midland Naturalist*. 144(1): 36-50. [https://doi.org/10.1674/0003-0031\(2000\)144\[0036:EOT EIS\]2.0.CO;2](https://doi.org/10.1674/0003-0031(2000)144[0036:EOT EIS]2.0.CO;2).

20. Hartman, K.M.; McCarthy, B.C. 2008. Changes in forest structure and species composition following invasion by a non-indigenous shrub, Amur honeysuckle (*Lonicera maackii*). *Journal of the Torrey Botanical Society*. 135(2): 245-259. <http://dx.doi.org/10.3159/07-RA-036.1>.

21. Hidayati, S.N.; Baskin, J.M.; Baskin, C.C. 2000. Dormancy-breaking and germination requirements of seeds of four *Lonicera* species (Caprifoliaceae) with underdeveloped spatulate embryos. *Seed Science Research*. 10(4): 459-469. <https://doi.org/10.1017/S0960258500000507>.

22. Hutchinson, T.F.; Vankat, J.L. 1997. Invasibility and effects of Amur honeysuckle in southwestern Ohio forests. *Conservation Biology*. 11(5): 1117-1124. <https://doi.org/10.1046/J.1523-1739.1997.96001.X>.

23. Ingold, J.L.; Craycraft, M.J. 1983. Avian frugivory on honeysuckle (*Lonicera*) in southwestern Ohio in fall. *Ohio Journal of Science*. 83(5): 256-258. <https://kb.osu.edu/handle/1811/22964>.

24. Kurz, D. 1997. Shrubs and woody vines of Missouri. Jefferson City, MO: Missouri Department of Conservation. 387 p.

25. Lieurance, D.; Landsbergen, K. 2016. The influence of light habitat on the physiology, biomass allocation, and fecundity of the invasive shrub Amur honeysuckle (*Lonicera maackii*, Caprifoliaceae). *Journal of the Torrey Botanical Society*. 143(4): 415-426. <http://dx.doi.org/10.3159/TORREY-D-15-00056.1>.

26. Loomis, J.D.; Cameron, G.N. 2014. Impact of the invasive shrub Amur honeysuckle (*Lonicera maackii*) on shrub-layer insects in a deciduous forest in the Eastern United States. *Biological Invasions*. 16(1): 89-100. <http://dx.doi.org/10.1007/s10530-013-0505-0>.

27. Loomis, J.D.; Cameron, G.N.; Uetz, G.W. 2014. Impact of the invasive shrub *Lonicera maackii* on shrub-dwelling Araneae in a deciduous forest in Eastern North America. *American Midland Naturalist*. 171(2): 204-218. <http://dx.doi.org/10.1674/0003-0031-171.2.204>.

***Lonicera maackii***  
**AMUR HONEYSUCKLE**

28. Luken, J.O. 1988. Population structure and biomass allocation of the naturalized shrub *Lonicera maackii* (Rupr.) Maxim. in forest and open habitats. *American Midland Naturalist*. 119(2): 258-267.  
<https://doi.org/10.2307/2425809>.

29. Luken, J.O.; Mattimiro, D.T. 1991. Habitat-specific resilience of the invasive shrub Amur honeysuckle (*Lonicera maackii*) during repeated clipping. *Ecological Applications*. 1(1): 104-109.  
<https://doi.org/10.2307/1941852>.

30. Luken, J.O.; Goessling, N. 1995. Seedling distribution and potential persistence of the exotic shrub *Lonicera maackii* in fragmented forests. *American Midland Naturalist*. 133(1): 124-130.  
<https://doi.org/10.2307/2426353>.

31. Luken, J.O.; Tholemeier, T.C.; Kunkel, B.A.; Kuddes, L.M. 1995. Branch architecture plasticity of Amur honeysuckle (*Lonicera maackii* (Rupr.) Herder): Initial response in extreme light environments. *Bulletin of the Torrey Botanical Club*. 122(3): 190-195.  
<https://doi.org/10.2307/2996083>.

32. Luken, J.O.; Tholemeier, T.C.; Kuddes, L.M.; Kunkel, B.A. 1995. Performance, plasticity, and acclimation of the nonindigenous shrub *Lonicera maackii* (Caprifoliaceae) in contrasting light environments. *Canadian Journal of Botany*. 73(12): 1953-1961.  
<https://doi.org/10.1139/b95-208>.

33. Mattos, K.J.; Orrock, J.L.; Watling, J.I. 2013. Rodent granivores generate context-specific seed removal in invaded and uninvaded habitats. *American Midland Naturalist*. 169(1): 168-178.  
<https://doi.org/10.1674/0003-0031-169.1.168>.

34. McEwan, R.W.; Arthur-Paratley, L.G.; Rieske, L.K.; Arthur, M.A. 2010. A multi-assay comparison of seed germination inhibition by *Lonicera maackii* and co-occurring native shrubs. *Flora*. 205(7): 475-483.  
<https://doi.org/10.1016/j.flora.2009.12.031>.

35. Miller, K.E.; Gorchov, D.L. 2004. The invasive shrub, *Lonicera maackii*, reduces growth and fecundity of perennial forest herbs. *Oecologia*. 139(3): 359-375.  
<http://dx.doi.org/10.1007/s00442-004-1518-2>.

36. Orrock, J.L.; Christopher, C.C.; Dutra, H.P. 2012. Seed bank survival of an invasive species, but not of two native species, declines with invasion. *Oecologia*. 168(4): 1103-1110.  
<https://doi.org/10.1007/s00442-011-2159-x>.

37. Pfeiffer, S.S.; Gorchov, D.L. 2015. Effects of the invasive shrub *Lonicera maackii* on soil water content in Eastern deciduous forests. *American Midland Naturalist*. 173(1): 38-46.  
<https://doi.org/10.1674/0003-0031-173.1.38>.

38. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

39. Rodewald, A.D.; Shustack, D.P.; Hitchcock, L.E. 2010. Exotic shrubs as ephemeral ecological traps for nesting birds. *Biological Invasions*. 12(1): 33-39.  
<https://doi.org/10.1007/s10530-009-9426-3>.

40. Schmidt, K.A.; Whelan, C.J. 1999. Effects of exotic *Lonicera* and *Rhamnus* on songbird nest predation. *Conservation Biology*. 13(6): 1502-1506.  
<http://dx.doi.org/10.1046/j.1523-1739.1999.99050.x>.

41. Schulz, K.E.; Wright, J. 2015. Reproduction of invasive Amur honeysuckle (*Lonicera maackii*) and the arithmetic of an extermination strategy. *Restoration Ecology*. 23(6): 900-908.  
<https://doi.org/10.1111/rec.12260>.

42. Southwick, E.E.; Loper, G.M.; Sadwick, S.E. 1981. Nectar production, composition, energetics, and pollinator attractiveness in spring flowers of western New York. *American Journal of Botany*. 68(7): 994-1002.  
<https://doi.org/10.1002/j.1537-2197.1981.tb07816.x>.

43. Trammell, T.L.E.; Ralston, H.A.; Scroggins, S.A.; Carreiro, M.M. 2012. Foliar production and decomposition rates in urban forests invaded by the exotic invasive shrub, *Lonicera maackii*. *Biological Invasions*. 14(3): 529-545.  
<http://dx.doi.org/10.1007/s10530-011-0093-9>.

44. U.S. Department of Agriculture, Natural Resources Conservation Service. 2021. The PLANTS Database. Greensboro, NC: National Plant Data Team.  
<http://plants.usda.gov>. [23 June 2021]

*Lonicera maackii*  
AMUR HONEYSUCKLE

45. Watling, J.I.; Hickman, C.R.; Lee, E. [and others]. 2011. Extracts of the invasive shrub *Lonicera maackii* increase mortality and alter behavior of amphibian larvae. *Oecologia*. 165(1): 153-159.  
<https://doi.org/10.1007/s00442-010-1777-z>.

46. White, D.W.; Stiles, E.W. 1992. Bird dispersal of fruits of species introduced into Eastern North America. *Canadian Journal of Botany*. 70(8): 1689-1696.  
<https://doi.org/10.1139/b92-208>.

47. Williams, C.E.; Ralley, J.J.; Taylor, D.H. 1992. Consumption of seeds of the invasive Amur honeysuckle *Lonicera maackii* (Rupr.) Maxim. by small mammals. *Natural Areas Journal*. 12(2): 86-89.  
[http://www.naturalareas.org/docs/46NAJ1202\\_86-89.pdf](http://www.naturalareas.org/docs/46NAJ1202_86-89.pdf).

48. Williams, C.E. 1999. Fruits of alien shrubs and deer mice: A test of the persistent fruit defense hypothesis. *Journal of the Pennsylvania Academy of Science*. 73(1): 33-37.  
<https://www.jstor.org/stable/44149285>.

**Photograph Information:**

Leaves and flowers [UGA5447967]: Leslie J. Mehrhoff, University of Connecticut. Hollow stem [UGA5560555]: Chris Evans, University of Illinois. Flowers [UGA5402910]: Annemarie Smith, Ohio Department of Natural Resources, Division of Forestry. Fruit [UGA1237034]: Chuck Bargeron, University of Georgia. Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Archibald, O.W.; Brooks, D.; Delanoy, L. 1997. An investigation of the invasive shrub European buckthorn, *Rhamnus cathartica* L., near Saskatoon, Saskatchewan. Canadian Field Naturalist. 111(4): 617-621.  
<https://www.researchgate.net/publication/239951389>.
2. Baskin, C.C.; Baskin, J.M. 2001. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, CA: Academic Press. 666 p.
3. Charles-Dominique, T.; Edelin, C.; Brisson, J.; Bouchard, A. 2012. Architectural strategies of *Rhamnus cathartica* (Rhamnaceae) in relation to canopy openness. Botany. 90(10): 976-989.  
<https://doi.org/10.1139/b2012-069>.
4. Culley, T.M.; Stewart, J.R. 2010. Microsatellite primers in *Rhamnus cathartica* (Rhamnaceae) and applicability in related taxa to assess hybridization events. American Journal of Botany. 97(3): e7-9.  
<https://doi.org/10.3732/ajb.0900394>.
5. Dirr, M.A. 1998. Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses. 5<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 1,187 p.
6. Fernald, M.L. 1950. Gray's manual of botany. 8<sup>th</sup> ed. New York: American Book Company. 1,632 p.
7. Frye, J.G.; Grosse, W. 1992. Growth responses to flooding and recovery of deciduous trees. Zeitschrift für Naturforschung C Journal of Biosciences. 47(9-10): 683-689. <https://doi.org/10.1515/znc-1992-9-1008>.
8. Gil-ad, N.L.; Reznicek, A.A. 1997. Evidence for hybridization of two Old World *Rhamnus* species—*R. cathartica* and *R. utilis* (Rhamnaceae)—in the New World. Rhodora. 99(897): 1-22. <https://www.biodiversitylibrary.org/page/33310690#page/3/mode/1up>.
9. Gill, D.S.; Marks, P.L. 1991. Tree and shrub seedling colonization of old fields in central New York. Ecological Monographs. 61(2): 183-205.  
<https://doi.org/10.2307/1943007>.
10. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
11. Godwin, H. 1943. *Rhamnus cathartica* L. Journal of Ecology. 31(1): 69-76. <https://doi.org/10.2307/2256792>.

***Rhamnus cathartica*  
COMMON BUCKTHORN**

12. Hamed, M.M.; Refahy, L.A.; Abdel-Aziz, M.S. 2015. Evaluation of antimicrobial activity of some compounds isolated from *Rhamnus cathartica* L. Oriental Journal of Chemistry. 31(2): 1133-1140. <http://dx.doi.org/10.13005/ojc/310266>.
13. Harrington, R.A.; Brown, B.J.; Reich, P.B. 1989. Ecophysiology of exotic and native shrubs in southern Wisconsin: I. Relationship of leaf characteristics, resource availability, and phenology to seasonal patterns of carbon gain. Oecologia. 80(3): 356-367. <https://doi.org/10.1007/bf00379037>.
14. Harrington, R.A.; Brown, B.J.; Reich, P.B.; Fownes, J.H. 1989. Ecophysiology of exotic and native shrubs in southern Wisconsin: II. Annual growth and carbon gain. Oecologia. 80(3): 368-373. <https://doi.org/10.1007/BF00379038>.
15. Heneghan, L.; Clay, C.; Brundage, C. 2002. Rapid decomposition of buckthorn litter may change soil nutrient levels. Ecological Restoration. 20(2): 108-111. <http://dx.doi.org/10.3368/er.20.2.108>.
16. Heneghan, L.; Fatemi, F.; Umek, L. [and others]. 2006. The invasive shrub European buckthorn (*Rhamnus cathartica*, L.) alters soil properties in Midwestern U.S. woodlands. Applied Soil Ecology. 32(1): 142-148. <https://doi.org/10.1016/j.apsoil.2005.03.009>.
17. Heidorn, R. 1991. Vegetation management guideline: exotic buckthorns—common buckthorn (*Rhamnus cathartica* L.), glossy buckthorn (*Rhamnus frangula* L.), Dahurian buckthorn (*Rhamnus davurica* Pall.). Natural Areas Journal. 11(4): 216-217. [http://www.naturalareas.org/docs/39NAJ1104\\_216-217.pdf](http://www.naturalareas.org/docs/39NAJ1104_216-217.pdf).
18. Hughes, J.W.; Cass, W.B. 1997. Pattern and process of a floodplain forest, Vermont, USA: predicted responses of vegetation to perturbation. Journal of Applied Ecology. 34(3): 594-612. <https://doi.org/10.2307/2404910>.
19. Klionsky, S.M.; Amatangelo, K.L.; Waller, D.M. 2011. Above- and belowground impacts of European buckthorn (*Rhamnus cathartica*) on four native forbs. Restoration Ecology. 19(6): 728-737. <https://doi.org/10.1111/j.1526-100X.2010.00727.x>.
20. Kurylo, J.; Endress, A.G. 2012. *Rhamnus cathartica*: notes on its early history in North America. Northeastern Naturalist. 19(4): 601-610. <https://doi.org/10.1656/045.019.0405>.

21. Kurz, D. 1997. Shrubs and woody vines of Missouri. Jefferson City, MO: Missouri Department of Conservation. 387 p.

22. Maw, M.G. 1984. *Rhamnus cathartica* L., Common or European buckthorn (Rhamnaceae). In: Kelleher, J.S.; Hueme, M.A., eds. Biological control programmes against insects and weeds in Canada 1969-1980. Slough, England: Commonwealth Agricultural Bureaux: 185-189. Chapter 39.

23. Pergams, O.R.W.; Norton, J.E. 2006. Treating a single stem can kill the whole shrub: a scientific assessment of buckthorn control methods. *Natural Areas Journal*. 26(3): 300-309. [https://doi.org/10.3375/0885-8608\(2006\)26\[300:TASSCK\]2.0.CO;2](https://doi.org/10.3375/0885-8608(2006)26[300:TASSCK]2.0.CO;2).

24. Qaderi, M.M.; Clements, D.R.; Cavers, P.B. 2009. The biology of Canadian weeds. 139. *Rhamnus cathartica* L. *Canadian Journal of Plant Science*. 89(1): 169-188. <https://doi.org/10.4141/CJPS08022>.

25. Ragsdale, D.W.; Voegtlin, D.J.; O'Neil, R.J. 2004. Soybean aphid biology in North America. *Annals of the Entomological Society of America*. 97(2): 204-208. <https://doi.org/10.1093/aesa/97.2.204>.

26. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

27. Roth, A.M.; Whitfeld, T.J.S.; Lodge, A.G. [and others]. 2015. Invasive earthworms interact with abiotic conditions to influence the invasion of common buckthorn (*Rhamnus cathartica*). *Oecologia*. 178(1): 219-230. <https://doi.org/10.1007/s00442-014-3175-4>.

28. Seltzner, S.; Eddy, T.L. 2003. Allelopathy in *Rhamnus cathartica*, European buckthorn. *The Michigan Botanist*. 42(2): 51-61. <http://hdl.handle.net/2027/spo.0497763.0042.201>.

29. Shaw, R.K. 1978. Correction: *Rhamnus cathartica* L. is not *Prunus nigra* Ait. from Alberta. *Great Basin Naturalist*. 38(1): 123. <https://scholarsarchive.byu.edu/cgi/viewcontent.cgi?article=2310&context=gbn>.

30. Smith, S.B.; DeSando, S.A.; Pagano, T. 2013. The value of native and invasive fruit-bearing shrubs for migrating songbirds. *Northeastern Naturalist*. 20(1): 171-184. <https://doi.org/10.1656/045.020.0114>.

***Rhamnus cathartica*  
COMMON BUCKTHORN**

31. Stewart, J.R.; Graves, W.R. 2006. Photosynthesis, growth, carbon allocation, and fruit load of *Frangula caroliniana* and *Rhamnus cathartica*. International Journal of Plant Sciences. 167(6): 1161-1168.  
<https://doi.org/10.1086/507650>.

32. Stover, M.E.; Marks, P.L. 1998. Successional vegetation on abandoned cultivated and pastured land in Tompkins County, New York. Journal of the Torrey Botanical Society. 125(2): 150-164.  
<https://doi.org/10.2307/2997302>.

33. Trial, H., Jr.; Dimond, J.B. 1979. Emodin in buckthorn: a feeding deterrent to phytophagous insects. Canadian Entomologist. 111(2): 207-212.  
<https://doi.org/10.4039/Ent111207-2>.

34. Vernon, M.E.; Magle, S.B.; Lehrer, E.W.; Bramble, J.E. 2014. Invasive European buckthorn (*Rhamnus cathartica* L.) association with mammalian species distribution in natural areas of the Chicagoland region, USA. Natural Areas Journal. 34(2): 134-143.  
<https://doi.org/10.3375/043.034.0203>.

35. Voegtlin, D.J.; O'Neil, R.J.; Graves, W.R. 2004. Tests of suitability of overwintering hosts of *Aphis glycines*: identification of a new host association with *Rhamnus alnifolia* L'Heritier. Annals of the Entomological Society of America. 97(2): 233-234.  
<https://doi.org/10.1093/aesa/97.2.233>.

36. Whitford, P.C.; Whitford, P.B. 1988. A note on nurse trees and browsing. Michigan Botanist. 27(4): 107-110. <https://babel.hathitrust.org/cgi/pt?id=mdp.39015029420919&view=1up&seq=115>.

37. Wolf, C.B. 1938. The North American species of *Rhamnus* botanical series 1. Claremont, CA: Rancho Santa Ana Botanic Garden. 136 p.

**Photograph Information:**

Leaves [UGA0008306]: Paul Wray, Iowa State University.  
Thorn [UGA5456183]; Fruit [UGA5274026]: Leslie J. Mehrhoff, University of Connecticut. Flowers [UGA5399725]: Robert Vidéki, Doronicum Kft.  
Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Banasiak, S.E.; Meiners, S.J. 2009. Long term dynamics of *Rosa multiflora* in a successional system. *Biological Invasions*. 11: 215-224.  
<https://doi.org/10.1007/s10530-008-9226-1>.
2. Baskin, C.C.; Baskin, J.M. 2001. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, CA: Academic Press. 666 p.
3. Boyd, R.C.; Henry, J.J. 1991. Cottontail rabbit habitat use on Delaware wildlife area, Ohio USA. *Ohio Journal of Science*. 91(4): 148-153.  
<http://hdl.handle.net/1811/23461>.
4. Bryan, W.B.; Mills, T.A. 1988. Effect of frequency and method of defoliation and plant size on the survival of multiflora rose. *Biological Agriculture and Horticulture*. 5(3): 209-214.  
<https://doi.org/10.1080/01448765.1988.9755145>.
5. Chung, S.K.; Choi, J.K.; Han, Y.L.; Hong, K.W. 1991. Studies on the seed dormancy and characteristics of seedlings according to the cropping season in thornless *Rosa multiflora* Hort. No. 1. *Research Reports of the Rural Development Administration (Hort.)*. Suweon. South Korea: Rural Development Administration. 33(3): 131-135.
6. Crowe, F.J. 1983. Witches' broom of rose: a new outbreak in several central states. *Plant Disease*. 67: 544-546. <https://doi.org/10.1094/PD-67-544>.
7. Davies, F.T., Jr. 1987. Effects of VA-mycorrhizal fungi on growth and nutrient uptake of cuttings of *Rosa multiflora* in two container media with three levels of fertilizer application. *Plant and Soil*. 104(1): 31-35.  
<https://doi.org/10.1007/BF02370621>.
8. Davies, F.T.; Castro-Jimenez, Y.; Duray, S.A. 1987. Mycorrhizae soil amendments, water relations and growth of *Rosa multiflora* under reduced irrigation regimes. *Scientia Horticulturae*. 33(3-4): 261-268.  
[https://doi.org/10.1016/0304-4238\(87\)90073-2](https://doi.org/10.1016/0304-4238(87)90073-2).
9. Debener, T. 1999. Genetic analysis of horticulturally important morphological and physiological characters in diploid roses. *Gartenbauwissenschaft*. 64(1): 14-20.  
[https://www.pubhort.org/ejhs/1999/file\\_3719.pdf](https://www.pubhort.org/ejhs/1999/file_3719.pdf).
10. Debener, T.; Dohm, A.; Mattiesch, L.; Forkmann, G. 2003. Use of diploid self incompatible rose genotypes as a tool for gene flow analyses in roses. *Plant Breeding*. 122(3): 285-287.  
<https://doi.org/10.1046/j.1439-0523.2003.00857.x>.

***Rosa multiflora***  
**MULTIFLORA ROSE**

11. Derr, J.F. 1992. Low management crops and areas: multiflora rose and its control in pastures. Blacksburg, VA: Virginia Cooperative Extension. Publication 456-017: 208-209.
12. Di, R.; Hill, J.H.; Epstein, A.H. 1990. Double-stranded RNA associated with the rose rosette disease of multiflora rose. *Plant Disease*. 74(1): 56-58. <https://doi.org/10.1094/PD-74-0056>.
13. Dirr, M.A. 1998. Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation, and uses. Champaign, IL: Stipes Publishing LLC. 1,187 p.
14. Dlugos, D.M.; Collins, H.; Bartelme, E.M.; Drenovsky, R.E. 2015. The non-native plant *Rosa multiflora* expresses shade avoidance traits under low light availability. *American Journal of Botany*. 102(8): 1323-1331. <https://doi.org/10.3732/ajb.1500115>.
15. Dugan, R.F. 1960. Multiflora rose in West Virginia. Bulletin 447. Morgantown, WV: West Virginia Agriculture and Forestry Experiment Station. 39 p. <https://doi.org/10.33915/agnic.447>.
16. Epstein, A.H.; Hill, J.H.; Nutter, F.W., Jr. 1997. Augmentation of rose rosette disease for biocontrol of multiflora rose (*Rosa multiflora*). *Weed Science*. 45(1): 172-178. <https://doi.org/10.1017/S004317450009264X>.
17. Epstein, A.H.; Hill, J.H. 1999. Status of rose rosette disease as a biological control for multiflora rose. *Plant Disease*. 83(2): 92-101. <https://doi.org/10.1094/PDIS.1999.83.2.92>.
18. Fernald, M.L. 1950. Gray's manual of botany. 8<sup>th</sup> ed. New York: American Book Company. 1,632 p.
19. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
20. Han, Y.Y.; Nam, Y.S. 2002. Difference of intra- and interspecific cross-compatibility of fertilization in several genus *Rosa*. *Journal of the Korean Society of Horticultural Science*. 43(3): 326-332.

21. Heckscher, C.M. 2004. Veery nest sites in a mid-Atlantic piedmont forest: vegetative physiognomy and use of alien shrubs. *American Midland Naturalist*. 151(2): 326-337. [https://doi.org/10.1674/0003-0031\(2004\)151\[0326:VNSIAM\]2.0.CO;2](https://doi.org/10.1674/0003-0031(2004)151[0326:VNSIAM]2.0.CO;2).

22. Hindal, D.F.; Wong, S.M. 1988. Potential biocontrol of multiflora rose, *Rosa multiflora*. *Weed Technology*. 2(2): 122-131. <https://doi.org/10.1017/S0890037X00030256>.

23. Huebner, C.D. 2003. Vulnerability of oak-dominated forests in West Virginia to invasive exotic plants: temporal and spatial patterns of nine exotic species using herbarium records and land classification data. *Castanea*. 68(1): 1-14. <https://www.fs.usda.gov/treesearch/pubs/14015>.

24. Huebner, C.D.; Steinman, J.; Hutchinson, T.F. [and others]. 2014. The distribution of a non-native (*Rosa multiflora*) and native (*Kalmia latifolia*) shrub in mature closed-canopy forests across soil fertility gradients. *Plant and Soil*. 377: 259-276. <https://doi.org/10.1007/s11104-013-2000-x>.

25. Jesse, L.C.; Moloney, K.A.; Obrycki, J.J. 2006a. Abundance of arthropods on the branch tips of the invasive plant, *Rosa multiflora* (Rosaceae). *Weed Biology and Management*. 6(4): 204-211. <https://doi.org/10.1111/j.1445-6664.2006.00222.x>.

26. Jesse, L.C.; Moloney, K.A.; Obrycki, J.J. 2006b. Insect pollinators of the invasive plant, *Rosa multiflora* (Rosaceae), in Iowa, USA. *Weed Biology and Management*. 6(4): 235-240. <https://doi.org/10.1111/j.1445-6664.2006.00221.x>.

27. Kaye, S.H.; Lewis, W.M.; Langel, K.A. 1995. Integrated management of multiflora rose in North Carolina. Publication No. AG-536. Raleigh, NC: North Carolina Cooperative Extension Service. 17 p.

28. Kool, M.T.N.; Van De Pol, P.A. 1996. Long-term flower production of a rose crop. I. The influence of planting system and rootstock clone. *Journal of Horticultural Science*. 71(3): 435-443. <https://doi.org/10.1080/14620316.1996.11515424>.

29. Kurz, D. 1997. Shrubs and woody vines of Missouri. Jefferson City, MO: Missouri Department of Conservation. 387 p.

***Rosa multiflora***  
**MULTIFLORA ROSE**

30. LaFleur, N.; Rubega, M.; Parent, J. 2009. Does frugivory by European starlings (*Sturnus vulgaris*) facilitate germination in invasive plants? *Journal of the Torrey Botanical Society*. 136(3): 332-341. <https://doi.org/10.3159/08-RA-111.1>.

31. Leck, M.A.; Leck, C.F. 1998. A ten-year seed bank study of old field succession in central New Jersey. *Journal of the Torrey Botanical Society*. 125(1): 11-32. <https://doi.org/10.2307/2997228>.

32. Luginbuhl, J.M.; Harvey, T.E.; Green, J.T., Jr. [and others]. 1999. Use of goats as biological agents for the renovation of pastures in the Appalachian region of the United States. *Agroforestry Systems*. 44(2): 241-252. <https://doi.org/10.1023/A:1006250728166>.

33. MacPhail, V.J.; Kevan, P.G. 2009. Review of the breeding systems of wild roses (*Rosa* spp.). *Floriculture and Ornamental Biotechnology*. 3(Special Issue 1): 1-13. <https://www.researchgate.net/publication/228504520>.

34. Mann, R.K.; Witt, W.W.; Rieck, C.E. 1986. Fosamine absorption and translocation in multiflora rose. *Weed Science*. 34(6): 830-833. <https://doi.org/10.1017/S0043174500067965>.

35. Martin, R.R.; Tzanetakis, I.E. 2008. First report of *Rosa multiflora* cryptic virus in *Rosa multiflora* in the Eastern United States. *Plant Disease*. 92(12): 1,706. <https://doi.org/10.1094/pdis-92-12-1,706b>.

36. McDonnell, M.J. 1986. Old field vegetation height and dispersal pattern of bird-disseminated woody plants. *Bulletin of the Torrey Botanical Club*. 113(1): 6-11. <https://doi.org/10.2307/2996227>.

37. Nakamura, N.; Hirakawa, H.; Sato, S. [and others]. 2018. Genome structure of *Rosa multiflora*, a wild ancestor of cultivated roses. *DNA Research*. 25(2): 113-121. <https://doi.org/10.1093/dnare/dsx042>.

38. Nalepa, C.A.; Piper, W.H. 1994. Bird dispersal of the larval stage of a seed predator. *Oecologia*. 100(1/2): 200-202. <https://doi.org/10.1007/BF00317148>.

39. Paris, C.D.; Maney T.J. 1939. *Rosa multiflora* and its progeny. *Proceedings of the Iowa Academy of Science*. 46(1): 149-160. <https://scholarworks.uni.edu/pias/vol46/iss1/18>.

40. Paterson, D.R.; Taber, R.A.; Pemberton, H.B.; Earhart, D.R. 1986. Interaction between an indigenous endomycorrhizal fungus and mineral nutrition of *Rosa multiflora* understock. *HortScience*. 21(2): 312-313.

41. Rhoads, A.F.; Block T. A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

42. Rosu, A.; Skirvin, R.M.; Bein, A. [and others]. 1995. The development of putative adventitious shoots from a chimeral thornless rose (*Rosa multiflora* Thunb. Ex J. Murr.) *in vitro*. *Journal of Horticultural Science*. 70(6): 901-907.  
<https://doi.org/10.1080/14620316.1995.11515365>.

43. Scott, R.F. 1965. Problems of multiflora rose spread and control. In: *Transactions of the 30<sup>th</sup> North American wildlife natural resources conference*. Washington, DC: Wildlife Management Institute: 360-378.

44. Shahid, A.; Garneau, D.E.; McCay, T.S. 2009. Selection of seeds of common native and non-native plants by granivorous rodents in the Northeastern United States. *The American Midland Naturalist*. 162(1): 207-212. <https://doi.org/10.1674/0003-0031-162.1.207>.

45. Shepherd, R.E. 1978. *History of the rose*. New York: The Macmillan Co. 264 p.

46. Smith, S.B.; DeSando, S.A.; Pagano, T. 2013. The value of native and invasive fruit-bearing shrubs for migrating songbirds. *Northeastern Naturalist*. 20(1): 171-184. <https://doi.org/10.1656/045.020.0114>.

47. Stoleson, S.H.; Finch D.M. 1999. Unusual nest sites for southwestern willow flycatchers. *Wilson Bulletin*. 111(4): 574-575.  
<https://www.fs.usda.gov/treesearch/pubs/35975>.

48. Ueda, Y.; Akimoto, S. 2001. Cross- and self- compatibility in various species of the genus *Rosa*. *Journal of Horticultural Science and Biotechnology*. 76(4): 392-395.  
<https://doi.org/10.1080/14620316.2001.11511382>.

49. Williams, C.E. 1999. Fruits of alien shrubs and deer mice: a test of the persistent fruit defense hypothesis. *Journal of the Pennsylvania Academy of Science*. 73(1): 33-37. <https://www.academia.edu/4055846/>.

***Rosa multiflora*  
MULTIFLORA ROSE**

50. Yambe, Y.; Takeno, K.; Saito, T. 1995. Light and phytochrome involvement in *Rosa multiflora* seed germination. *Journal of American Society of Horticultural Science*. 120(6): 953-955.  
<https://doi.org/10.21273/JASHS.120.6.953>.

51. Yambe, Y.; Saito, T. 1999. Effect of temperature on seed (achene) germination of *Rosa* spp. *Environmental Control in Biology*. 37(4): 261-264. [https://www.jstage.jst.go.jp/article/ecb1963/37/4/37\\_4\\_261/](https://www.jstage.jst.go.jp/article/ecb1963/37/4/37_4_261/) [article]. [Japanese, English abstract].

52. Younis, A.; Riaz, A.; Ahmed, R.; Raza, A. 2007. Effect of hot water, sulphuric acid and nitric acid on the germination of rose seeds. *Acta Horticulture*. 755: 105-108.  
<https://doi.org/10.17660/ActaHortic.2007.755.12>.

53. Zhang, G-Q.; Huang, X-D.; Wang, H. [and others]. 2008. Anti-inflammatory and analgesic effects of the ethanol extract of *Rosa multiflora* Thunb. hips. *Journal of Ethnopharmacology*. 118(2): 290-294.  
<https://doi.org/10.1016/j.jep.2008.04.014>.

**Photograph Information:**

Leaf [UGA5449995]; Flowers [UGA5449984]: Leslie J. Mehrhoff, University of Connecticut. Fringed stipule [UGA2307111]; Fruit [UGA2307113]: James H. Miller, Forest Service, U.S. Department of Agriculture.

Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Bruckart, W.L.; Eskandari, F.M. 2015. First report of a leaf spot caused by *Sphaerulina tirolensis* on *Rubus phoenicolasius*. *Plant Disease*. 99(9): 1,275.  
<https://doi.org/10.1094/PDIS-09-14-0971-PDN>.
2. Caplan, J.S.; Stone, B.W.; Faillace, C.A. [and others]. 2017. Nutrient foraging strategies are associated with productivity and population growth in forest shrubs. *Annals of Botany*. 119(6): 977-988.  
<https://doi.org/10.1093/aob/mcw271>.
3. Caplan, J.S.; Whitehead, R.D.; Gover, A.E.; Grabosky, J.C. 2018. Extended leaf phenology presents an opportunity for herbicidal control of invasive forest shrubs. *Weed Research*. 58(4): 244-249.  
<https://doi.org/10.1111/wre.12305>.
4. Carter, E.T.; Eads, B.C.; Ravesi, M.J.; Kingsbury, B.A. 2015. Exotic invasive plants alter thermal regimes: implications for management using a case study of a native ectotherm. *Functional Ecology*. 29(5): 683-693.  
<https://doi.org/10.1111/1365-2435.12374>.
5. Clark, J.R.; Moore, J.N. 1993. Longevity of *Rubus* seeds after long-term cold storage. *Hortscience*. 28(9): 929-930.  
<https://doi.org/10.21273/HORTSCI.28.9.929>.
6. Converse, E.H. 1960. Wineberry, *Rubus phoenicolasius*, a wild host of raspberry mosaic, and an aphid vector. *Phytopathology*. 59(8): 570.
7. Dirr, M.A. 1998. *Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses*. 5<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 1,187 p.
8. Driscoll, A.G.; Angeli, N.F.; Gorchov, D.L. [and others]. 2016. The effect of treefall gaps on the spatial distribution of three invasive plants in a mature upland forest in Maryland. *The Journal of the Torrey Botanical Society*. 143(4): 349-358.  
<https://doi.org/10.3159/TORREY-D-15-00022.1>.
9. Emsweller, L.N.; Gorchov, D.L.; Zhang, Q. [and others]. 2018. Seed rain and disturbance impact recruitment of invasive plants in upland forest. *Invasive Plant Science and Management*. 11(2): 69-81.  
<https://doi.org/10.1017/inp.2018.14>.
10. Gleason, H.A.; Cronquist, A. 1993. *Manual of vascular plants of Northeastern United States and adjacent Canada*. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.

## ***Rubus phoenicolasius***

### **WINEBERRY**

***Rubus phoenicolasius***

**WINEBERRY**

11. Gorchov, D.L.; Thompson, E.; O'Neill, J. [and others]. 2011. Treefall gaps required for establishment, but not survival, of invasive *Rubus phoenicolasius* in deciduous forest, Maryland, USA. *Plant Species Biology*. 26(3): 221-234.  
<https://doi.org/10.1111/j.1442-1984.2011.00317.x>.
12. Imanishi, H.; Tsuyuzaki, H.; Terui, S. 2008. Growth habit, the effect of shading and soil moisture content on primocane growth of *Rubus* spp. native to the Tohoku region in Japan. *Acta Horticulturae*. 777: 251-255.  
<https://doi.org/10.17660/ActaHortic.2008.777.37>.
13. Innis, A.F. 2005. Comparative ecology of the invasive *Rubus phoenicolasius* and the native *Rubus argutus*. College Park, MD: University of Maryland. 157 p. Ph.D. dissertation.  
<https://drum.lib.umd.edu/bitstream/handle/1903/2634/umi-umd-2542.pdf?isAllowed=y&sequence=1>.
14. Innis, A.F.; Forseth, I.N.; Whigham, D.F.; McCormick, M.K. 2011. Genetic diversity in the invasive *Rubus phoenicolasius* as compared to the native *Rubus argutus* using inter-simple sequence repeat (ISSR) markers. *Biological Invasions*. 13(8): 1735-1738.  
<https://doi.org/10.1007/s10530-011-0012-0>.
15. Rhoads, A.F.; Block, T.A. 2000. The plants of Pennsylvania: an illustrated manual. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.
16. Williams, S.C.; Ward, J.S.; Ramakrishnan, U. 2008. Endozoochory by white-tailed deer (*Odocoileus virginianus*) across a suburban/woodland interface. *Forest Ecology and Management*. 255(3-4): 940-947.  
<https://doi.org/10.1016/j.foreco.2007.10.003>.
17. Williams, V-R.J.; Sahil, H.F. 2016. A comparison of herbivore damage on three invasive plants and their native congeners: implications for the enemy release hypothesis. *Castanea*. 81(2): 128-137.  
<https://doi.org/10.2179/15-069>.

**Photograph Information:**

Plant [UGA5449869]; Leaf [UGA5449906]; Stem [UGA5449892]; Flower [UGA5449865]; Fruit [UGA5449913]: Leslie J. Mehrhoff, University of Connecticut. Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Baskin, C.C.; Baskin, J.M. 2001. Seeds: ecology, biogeography, and evolution of dormancy and germination. San Diego, CA: Academic Press. 666 p.
2. Dirr, M.A. 1998. Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses. 5<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 1,187 p.
3. Fang, W. 2005. Spatial analysis of an invasion front of *Acer platanoides*: dynamic inferences from static data. *Ecography*. 28(3): 283-294.  
<https://doi.org/10.1111/j.0906-7590.2005.04052.x>.
4. Fernald, M.L. 1950. Gray's manual of botany. 8th ed. New York: American Book Company. 1,632 p.
5. Galbraith-Kent, S.L.; Handel, S.N. 2008. Invasive *Acer platanoides* inhibits native sapling growth in forest understorey communities. *Journal of Ecology*. 96(2): 293-302.  
<https://doi.org/10.1111/j.1365-2745.2007.01337.x>.
6. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
7. Gomez-Aparicio, L.; Canham, C.D. 2008. Neighborhood models of the effects of invasive tree species on ecosystem processes. *Ecological Monographs*. 78(1): 69-86.  
<https://doi.org/10.1890/06-2036.1>.
8. Gomez-Aparicio, L.; Canham, C.D.; Martin, P.H. 2008. Neighborhood models of the effects of the invasive *Acer platanoides* on tree seedling dynamics: linking impacts on communities and ecosystems. *Journal of Ecology*. 96(1): 78-90.  
<https://doi.org/10.1111/j.1365-2745.2007.01317.x>.
9. Hong, T.D.; Ellis, R.H. 1990. A comparison of maturation drying, germination, and desiccation tolerance between developing seeds of *Acer pseudoplatanus* L. and *Acer platanoides* L. *New Phytologist*. 116(4): 589-596.  
<https://doi.org/10.1111/j.1469-8137.1990.tb00543.x>.
10. Jensen, M. 2001. Temperature relations of germination in *Acer platanoides* L. seeds. *Scandinavian Journal of Forest Research*. 16(5): 404-414. <https://doi.org/10.1080/02827580152632793>.

*Acer platanoides*  
NORWAY MAPLE

11. Martin, P.H. 1999. Norway maple (*Acer platanoides*) invasion of a natural forest stand: understory consequence and regeneration pattern. *Biological Invasions*. 1: 215-222.  
<https://doi.org/10.1023/A:1010084421858>.
12. Matlack, G.R. 1987. Diaspore size, shape, and fall behavior in wind-dispersed plant species. *American Journal of Botany*. 74(8): 1150-1160.  
<https://doi.org/10.1002/j.1537-2197.1987.tb08729.x>.
13. Niinemets, U. 1998. Growth of young trees of *Acer platanoides* and *Quercus robur* along a gap-understory continuum: interrelationships between allometry, biomass partitioning, nitrogen, and shade tolerance. *International Journal of Plant Science*. 159(2): 318-330. <https://www.jstor.org/stable/2475096>.
14. Reich, P.B.; Oleksyn, J.; Modrzynski, J. [and others]. 2005. Linking litter calcium, earthworms and soil properties: a common garden test with 14 tree species. *Ecology Letters*. 8(8): 811-818.  
<https://doi.org/10.1111/j.1461-0248.2005.00779.x>.
15. Reinhart, K.O.; Maestre, F.T.; Callaway, R.M. 2006. Facilitation and inhibition of seedlings of an invasive tree (*Acer platanoides*) by different tree species in a mountain ecosystem. *Biological Invasions*. 8(2): 231-240. <https://doi.org/10.1007/s10530-004-5163-9>.
16. U.S. Department of Agriculture, Natural Resources Conservation Service. 2021. The PLANTS Database. Greensboro, NC: National Plant Data Team.  
<http://plants.usda.gov>. [23 June 2021].
17. Webb, S.L.; Kaunzinger, C.K. 1993. Biological invasion of the Drew University (New Jersey) Forest Preserve by Norway maple (*Acer platanoides* L.). *Bulletin of the Torrey Botanical Club*. 120(3): 343-349.  
<https://doi.org/10.2307/2996999>.
18. Wyckoff, P.H.; Webb S.L. 1996. Understory influence of the invasive Norway maple (*Acer platanoides*). *Bulletin of the Torrey Botanical Club*. 123(3): 197-205.  
<https://doi.org/10.2307/2996795>.

**Photograph Information:**

Leaf [UGA0008373]; Flowers [UGA0008102]; Samara [UGA0008225]: Paul Wray, Iowa State University.  
Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Bao, Z.; Nilsen, E.T. 2015. Interactions between seedlings of the invasive tree *Ailanthus altissima* and the native tree *Robinia pseudoacacia* under low nutrient conditions. *Journal of Plant Interactions*. 10(1): 173-184.  
<https://doi.org/10.1080/17429145.2015.1070208>.
2. Bory, G.; Clair-Maczulajtys, D. 1980. Production, dissemination et polymorphisme des semences d'*Ailanthus altissima* (Mill.) Swingle, Simarubacees. *Revue Generale de Botanique*. 88: 297-311.
3. Cadenasso, M.L.; Pickett, S.T.A. 2000. Linking forest edge structure to edge function: mediation of herbivore damage. *Journal of Ecology*. 88(1): 31-44.  
<https://doi.org/10.1046/j.1365-2745.2000.00423.x>.
4. Dalby, R. 2000. Minor bee plants in a major key: tamarisk, ailanthus and teasel. *American Bee Journal*. 140(1): 60-61.
5. Dirr, M.A. 1998. *Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses*. 5<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 1,187 p.
6. Facelli, J.M. 1994. Multiple indirect effects of plant litter affect the establishment of woody seedlings in old fields. *Ecology*. 75(6): 1727-1735.  
<https://doi.org/10.2307/1939632>.
7. Feret, P.P. 1973. Early flowering in *Ailanthus*. *Forest Science*. 19(3): 237-239. <https://academic.oup.com/forestscience/article/19/3/237/4675487?login=true>.
8. Feret, P.P.; Bryant, R.L.; Ramsey, J.A. 1974. Genetic variation among American seed sources of *Ailanthus altissima* (Mill.) Swingle. *Scientia Horticulturae*. 2(4): 405-411.  
[https://doi.org/10.1016/0304-4238\(74\)90047-8](https://doi.org/10.1016/0304-4238(74)90047-8).
9. Gleason, H.A.; Cronquist, A. 1993. *Manual of vascular plants of Northeastern United States and adjacent Canada*. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
10. Grace, J.K. 1997. Influence of tree extractives on foraging preferences of *Reticulitermes flavipes* (Isoptera: Rhinotermitidae). *Sociobiology*. 30(1): 35-42.  
<https://www.ctahr.hawaii.edu/gracek/pdfs/120.pdf>.

## *Ailanthus altissima*

### TREE OF HEAVEN

11. Gravano, E.; Ferretti, M.; Bussotti, F.; Grossoni, P. 1999. Foliar symptoms and growth reduction of *Ailanthus altissima* Desf. in an area with high ozone and acidic deposition in Italy. *Water, Air, and Soil Pollution*. 116(1): 267-272.  
<https://doi.org/10.1023/A:1005212517712>.
12. Graves, W.R. 1990. Stratification not required for tree-of-heaven germination. *Tree Planters' Notes*. 41(2): 10-12.
13. Hamerlynck, E.P. 2001. Chlorophyll fluorescence and photosynthetic gas exchange responses to irradiance of tree of heaven (*Ailanthus altissima*) in contrasting urban environments. *Photosynthetica*. 39(1): 79-86.  
<https://doi.org/10.1023/A:1012448019931>.
14. Heisey, R.M. 1990. Allelopathic and herbicidal effects of extracts from tree of heaven (*Ailanthus altissima*). *American Journal of Botany*. 77(5): 662-670.  
<https://doi.org/10.2307/2444812>.
15. Hu, S.Y. 1979. *Ailanthus*. *Arnoldia*. 39(2): 29-50.  
<http://arnoldia.arboretum.harvard.edu/pdf/articles/1979-39-2-ailanthus.pdf>.
16. Kasson, M.T.; O'Neal, E.S.; Davis, D.D. 2015. Expanded host range testing for *Verticillium nonalfalfa*: potential biocontrol agent against the invasive *Ailanthus altissima*. *Plant Disease*. 99(6): 823-835.  
<https://doi.org/10.1094/PDIS-04-14-0391-RE>.
17. Kostel-Hughes, F.; Young, T.P.; McDonnell, M.J. 1998. The soil seed bank and its relationship to the aboveground vegetation in deciduous forests in New York City. *Urban Ecosystems*. 2(1): 43-59.  
<https://doi.org/10.1023/A:1009541213518>.
18. Kowarik, I. 1995. Clonal growth in *Ailanthus altissima* on a natural site in West Virginia. *Journal of Vegetation Science*. 6(6): 853-856.  
<http://dx.doi.org/10.2307/3236399>.
19. Kowarik, I.; Säumel, I. 2008. Water dispersal as an additional pathway to invasions by the primarily wind-dispersed tree *Ailanthus altissima*. *Plant Ecology*. 198(2): 241-252.  
<https://doi.org/10.1007/s11258-008-9398-x>.
20. Landenberger, R.E.; Kota, N.L.; McGraw, J.B. 2007. Seed dispersal of the non-native invasive tree *Ailanthus altissima* into contrasting environments. *Plant Ecology*. 192: 55-70.  
<https://doi.org/10.1007/s11258-006-9226-0>.

21. Lawrence, J.G.; Colwell, A.; Sexton, O.J. 1991. The ecological impact of allelopathy in *Ailanthus altissima* (Simaroubaceae). American Journal of Botany. 78(7): 948-958. <https://doi.org/10.2307/2445173>.

22. Marshall, P.E.; Furnier, G.R. 1981. Growth responses of *Ailanthus altissima* seedlings to SO<sub>2</sub>. Environmental Pollution Series A, Ecological and Biological. 25(2): 149-153. [https://doi.org/10.1016/0143-1471\(81\)90015-5](https://doi.org/10.1016/0143-1471(81)90015-5).

23. Motard, E.; Dusz, S.; Geslin, B. [and others]. 2015. How invasion by *Ailanthus altissima* transforms soil and litter communities in a temperate forest ecosystem. Biological Invasions. 17(6): 1817-1832. <http://dx.doi.org/10.1007/s10530-014-0838-3>.

24. Ostfeld, R.S.; Manson, R.H.; Canham, C.D. 1997. Effects of rodents on survival of tree seeds and seedlings invading old fields. Ecology. 78(5): 1531-1542. [https://doi.org/10.1890/0012-9658\(1997\)078\[1531:EROSO\]2.0.CO;2](https://doi.org/10.1890/0012-9658(1997)078[1531:EROSO]2.0.CO;2).

25. Pan, E.; Bassuk, N. 1986. Establishment and distribution of *Ailanthus altissima* in the urban environment. Journal of Environmental Horticulture. 4(1): 1-4. <https://doi.org/10.24266/0738-2898-4.1.1>.

26. Rebbeck, J.; Jolliff, J. 2018. How long do seeds of the invasive tree, *Ailanthus altissima* remain viable? Forest Ecology and Management. 429: 175-179. <https://doi.org/10.1016/j.foreco.2018.07.001>.

27. Trifilò, P.; Raimondo, F.; Nardini, A. [and others]. 2004. Drought resistance of *Ailanthus altissima*: root hydraulics and water relations. Tree Physiology. 24(1): 107-114. <https://doi.org/10.1093/treephys/24.1.107>.

28. Uyi, O.; Keller, J.A.; Johnson, A. [and others]. 2020. Spotted lanternfly (Hemiptera: Fulgoridae) can complete development and reproduce without access to the preferred host, *Ailanthus altissima*. Environmental Entomology. 49(5): 1185-1190. <https://doi.org/10.1093/ee/nvaa083>.

29. Vilà, M.; Tessier, M.; Suehs, C.M. [and others]. 2006. Local and regional assessments of the impacts of plant invaders on vegetation structure and soil properties of Mediterranean islands. Journal of Biogeography. 33(5): 853-861. <https://doi.org/10.1111/j.1365-2699.2005.01430.x>.

*Ailanthus altissima*

TREE OF HEAVEN

30. Wickert, K.L.; O'Neal, E.S.; Davis, D.D.; Kasson, M.T. 2017. Seed production, viability, and reproductive limits of the invasive *Ailanthus altissima* (tree of heaven) within invaded environments. *Forests*. 8(7): 226. <https://doi.org/10.3390/f8070226>.

**Photograph Information:**

Leaves [UGA0016005]; Leaflet close up [UGA2307007]; Twig with mature fruit [UGA2307009]: James H. Miller, USDA Forest Service. Fruit/seed (reddish color is cultivar dependent) [UGA1150029]: Chuck Bargeron, University of Georgia. Photographs reproduced from [www.invasive.org](http://www.invasive.org).

1. Beckjord, P.R.; Hacsaylo, E. 1984. E-strain fungus associations with roots of *Paulownia tomentosa* and *Pinus strobus*. Bulletin of the Torrey Botanical Club. 111(2): 227-230. <https://doi.org/10.2307/2996024>.
2. Bonner, F.T. 2008. *Paulownia tomentosa* (Thunb.) Sieb. & Zucc. ex Steud. In: Bonner, F.T.; Karrfalt, R.P., eds. The woody plant seed manual. Agricultural Handbook 727. Hamden, CT: U.S. Department of Agriculture, Forest Service: 772-773. [https://www.fs.fed.us/rm/pubs\\_series/wo/wo\\_ah727.pdf](https://www.fs.fed.us/rm/pubs_series/wo/wo_ah727.pdf).
3. Carpenter, S.B.; Smith, N.D. 1979. Germination of paulownia seeds after stratification and dry storage. Tree Planters' Notes. 30(4): 4-6. [https://rngr.net/publications/tpn/30-4/30\\_4\\_4\\_6.pdf](https://rngr.net/publications/tpn/30-4/30_4_4_6.pdf).
4. Dirr, M.A. 1998. Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses. 5<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 1,187 p.
5. Essl, F. 2007. From ornamental to detrimental? The incipient invasion of Central Europe by *Paulownia tomentosa*. Preslia. 79: 377-389. <http://www.preslia.cz/P074Ess.pdf>.
6. Gleason, H.A.; Cronquist, A. 1993. Manual of vascular plants of Northeastern United States and adjacent Canada. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.
7. Hyatt, L.A.; Casper, B.B. 2001. Seed bank formation during early secondary succession in a temperate deciduous forest. Journal of Ecology. 88(3): 516-527. <https://doi.org/10.1046/j.1365-2745.2000.00465.x>.
8. Hu, S.Y. 1959. A monograph of the genus *Paulownia*. Quarterly Journal of the Taiwan Museum. 12: 1-54.
9. Kiermeier P. 1977. Erfahrungen mit *Paulownia tomentosa* (Thunb.) Steud. im Rheingau. Mitt. Dtsch. Dendrol. Ges. 69: 11-22.
10. Kumar, P.P.; Rao, C.D.; Rajaseger, G.; Rao, A.N. 1999. Seed surface architecture and random amplified polymorphic DNA profiles of *Paulownia fortunei*, *P. tomentosa* and their hybrid. Annals of Botany. 83(2): 103-107. <https://doi.org/10.1006/anbo.1998.0780>.
11. Langdon, K.R.; Johnson, K.D. 1994. Additional notes on invasiveness of *Paulownia tomentosa* in natural areas. Natural Areas Journal. 14(2): 139-140. [www.jstor.org/stable/43911427](http://www.jstor.org/stable/43911427).

*Paulownia tomentosa*

PRINCESS TREE

12. Lemke, D.; Schweitzer, C.J.; Tadesse, W. [and others]. 2013. Geospatial assessment of invasive plants on reclaimed mines in Alabama. *Invasive Plant Science and Management*. 6(3): 401-410.  
<http://dx.doi.org/10.1614/IPSM-D-12-00045.1>.
13. Longbrake, A.C.W. 2001. Ecology and invasive potential of *Paulownia tomentosa* (Scrophulariaceae) in a hardwood forest landscape. Athens, OH: Ohio University. 174 p. Ph.D. dissertation.  
[https://etd.ohiolink.edu/apexprod/rws\\_etd/send\\_file/send?accession=ohiou992358342&disposition=inline](https://etd.ohiolink.edu/apexprod/rws_etd/send_file/send?accession=ohiou992358342&disposition=inline).
14. Longbrake, A.C.W.; McCarthy, B.C. 2001. Biomass allocation and resprouting ability of princess tree (*Paulownia tomentosa*: Scrophulariaceae) across a light gradient. *The American Midland Naturalist*. 146(2): 388-403. [http://dx.doi.org/10.1674/0003-0031\(2001\)146\[0388:BAARAO\]2.0.CO;2](http://dx.doi.org/10.1674/0003-0031(2001)146[0388:BAARAO]2.0.CO;2).
15. Melhuish, J.H.; Gentry, C.E., Jr.; Beckjord, P.R. 1990. *Paulownia tomentosa* seedling growth at differing levels of pH, nitrogen, and phosphorus. *Journal of Environmental Horticulture*. 8(4): 205-207.  
<https://doi.org/10.24266/0738-2898-8.4.205>.
16. Remaley, T. 2005. Plant Conservation Alliance fact sheet: princess tree. Washington, DC: Bureau of Land Management, National Park Service, Plant Conservation Alliance. Plant Conservation Alliance. 3 p. <https://www.invasive.org/weedcd/pdfs/wgw/princesstree.pdf>. [11 June 2021].
17. Rhoads, A.F.; Block, T.A. 2000. *The plants of Pennsylvania: an illustrated manual*. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.
18. Richter, M.; Böcker, R. 2001. Städtisches vorkommen und verbreitungszentren des blauglockenbaumes (*Paulownia tomentosa*) in Südwestdeutschland. *Mitt. Dtsch. Dendrol. Ges.* 86: 125-132.
19. Si, C.L.; Liu, S.C.; Hu, H.Y. [and others]. 2012. Activity-guided screening of the antioxidants from *Paulownia tomentosa* var. *tomentosa* bark. *Bioresources*. 8(1): 628-637. <http://dx.doi.org/10.15376/biores.8.1.628-637>.
20. Snow, W.A. 2015. Ornamental, crop, or invasive? The history of the empress tree (*Paulownia*) in the USA. *Forests, Trees and Livelihoods*. 24(2): 85-96.  
<https://doi.org/10.1080/14728028.2014.952353>.

21. Tackett, E.M.; Graves, D.H. 1983. Evaluation of direct-seeding of tree species on surface mine spoil after five years. In: Proceedings of the 1983 Symposium on Surface Mining, Hydrology, Sedimentology and Reclamation. Lexington KY: University of Kentucky, OES Publications: 437-441.

22. Todorović, S.; Božić, D.; Simonović, A. [and others]. 2010. Interaction of fire-related cues in seed germination of the potentially invasive species *Paulownia tomentosa* Steud. *Plant Species Biology*. 25(3): 193-202.  
<http://dx.doi.org/10.1111/j.1442-1984.2010.00293.x>.


23. Wermelinger, B.; Wyniger, D.; Forster, B. 2008. First records of an invasive bug in Europe: *Halyomorpha halys* Stal (Heteroptera: Pentatomidae), a new pest on woody ornamentals and fruit trees? *Mitteilungen der Schweizerischen Entomologischen Gesellschaft*. 81(1/2): 1-8. <https://doi.org/10.5169/SEALS-402954>.

24. Williams, C.E. 1993. Age structure and importance of naturalized *Paulownia tomentosa* in a central Virginia streamside forest. *Castanea*. 58(4): 243-249.  
<https://www.jstor.org/stable/4033654>.

25. Young, J.A.; Young, C.G. 1992. Seeds of woody plants in North America. Portland, OR: Dioscorides Press. 418 p.

#### Photograph Information:

Trees [UGA1237040]: Chuck Bargeron, University of Georgia. Leaves [UGA5552391]: Nancy Loewenstein, Auburn University. Stem [UGA5403433]: Annemarie Smith, ODNR Division of Forestry. Flower Buds [UGA5453636]; Flowers [UGA5453605], [UGA5453548]; Immature Fruit [UGA5453537]; Mature Fruit [UGA5391711]: Barry Rice, [sarracenia.com](http://sarracenia.com). Photographs reproduced from [www.invasive.org](http://www.invasive.org).



1. Bell, R.L.; Zimmerman, R.H. 1990. Combining ability analysis of juvenile period in pear. *HortScience*. 25(11): 1425-1427.  
<https://doi.org/10.21273/HORTSCI.25.11.1425>.
2. Challice, J.S.; Williams, A.H. 1968. Phenolic compounds of the genus *Pyrus*—I. the occurrence of flavones and phenolic acid derivatives of 3,4-dihydroxybenzyl alcohol 4-glucoside in *Pyrus calleryana*. *Phytochemistry*. 7(1): 119-130.  
[https://doi.org/10.1016/S0031-9422\(00\)88214-X](https://doi.org/10.1016/S0031-9422(00)88214-X).
3. Culley, T.M.; Hardiman, N.A. 2007. The beginning of a new invasive plant: a history of the ornamental Callery pear in the United States. *Bioscience*. 57(11): 956-964. <https://doi.org/10.1641/B571108>.
4. Culley, T.M.; Hardiman, N. 2009. The role of intraspecific hybridization in the evolution of invasiveness: a case study of the ornamental pear tree, *Pyrus calleryana*. *Biological Invasions*. 11(5): 1107-1119. <https://doi.org/10.1007/s10530-008-9386-z>.
5. Culley, T.M.; Hardiman, N.A.; Hawks, J. 2011. The role of horticulture in plant invasions: how grafting in cultivars of Callery pear (*Pyrus calleryana*) can facilitate spread into natural areas. *Biological Invasions*. 13(3): 739-746.  
<https://doi.org/10.1007/s10530-010-9864-y>.
6. Dirr, M.A. 1998. *Manual of woody landscape plants: their identification, ornamental characteristics, culture, propagation and uses*. 5<sup>th</sup> ed. Champaign, IL: Stipes Publishing LLC. 1,187 p.
7. Dirr, M.A. 2003. *Dirr's hardy trees and shrubs: an illustrated encyclopedia*. Portland, OR: Timber Press. 493 p.
8. Galvin, M.F. 1999. A methodology for assessing and managing biodiversity in street tree populations: a case study. *Journal of Arboriculture*. 25(3): 124-128.  
<https://www.researchgate.net/publication/237329270>.
9. Gerhold, H.D. 2000. Callery pear cultivars tested as street trees: second report. *Journal of Arboriculture*. 26(1): 55-59.
10. Gleason, H.A.; Cronquist, A. 1993. *Manual of vascular plants of Northeastern United States and adjacent Canada*. 2<sup>nd</sup> ed. Bronx, NY: The New York Botanical Garden. 910 p.

*Pyrus calleryana*

CALLERY PEAR

11. Hardiman, N.A.; Culley, T.M. 2010. Reproductive success of cultivated *Pyrus calleryana* (Rosaceae) and establishment ability of invasive, hybrid progeny. *American Journal of Botany*. 97(10): 1698-1706.  
<https://doi.org/10.3732/ajb.1000113>.
12. Kato, S.; Imai, A.; Rie, N.; Mukai, Y. 2013. Population genetic structure in a threatened tree, *Pyrus calleryana* var. *dimorphylla* revealed by chloroplast DNA and nuclear SSR locus polymorphisms. *Conservation Genetics*. 14: 983-996.
13. Keathley, C.P.; Potter, D.A.; Houtz, R.L. 1999. Freezing-altered palatability of Bradford pear to Japanese beetle: evidence for decompartmentalization and enzymatic degradation of feeding deterrents. *Entomologia Experimentalis et Applicata*. 90(1): 49-59.  
<https://doi.org/10.1046/j.1570-7458.1999.00422.x>.
14. Kuser, J.E.; Robinson, G.; Polanin, N. 2001. Four-year evaluation of five cultivars of *Pyrus calleryana*. *Journal of Arboriculture*. 27(2): 88-91.
15. Li, H.; Cong, Y.; Lin, J.; Chang, Y. 2015. Enhanced tolerance and accumulation of heavy metal ions by engineered *Escherichia coli* expressing *Pyrus calleryana* phytochelatin synthase. *Journal of Basic Microbiology*. 55(3): 398-405.  
<https://doi.org/10.1002/jobm.201300670>.
16. McPherson, E.G.; van Doorn, N.; de Goede, J. 2016. Structure, function and value of street trees in California, USA. *Urban Forestry and Urban Greening*. 17: 104-115.  
<https://doi.org/10.1016/j.ufug.2016.03.013>.
17. Morewood, W.D.; Hoover, K.; Neiner, P.R. [and others]. 2004. Host tree resistance against the polyphagous wood-boring beetle *Anoplophora glabripennis*. *Entomologia Experimentalis et Applicata*. 110: 79-86.  
<https://doi.org/10.1111/j.0013-8703.2004.00120.x>.
18. Rahman, M.A.; Smith, J.G.; Stringer, P.; Ennos, A.R. 2011. Effect of rooting conditions on the growth and cooling ability of *Pyrus calleryana*. *Urban Forestry and Urban Greening*. 10(3): 185-192.  
<https://doi.org/10.1016/j.ufug.2011.05.003>.
19. Rhoads, A.F.; Block, T.A. 2000. *The plants of Pennsylvania: an illustrated manual*. Philadelphia, PA: University of Pennsylvania Press. 1,061 p.

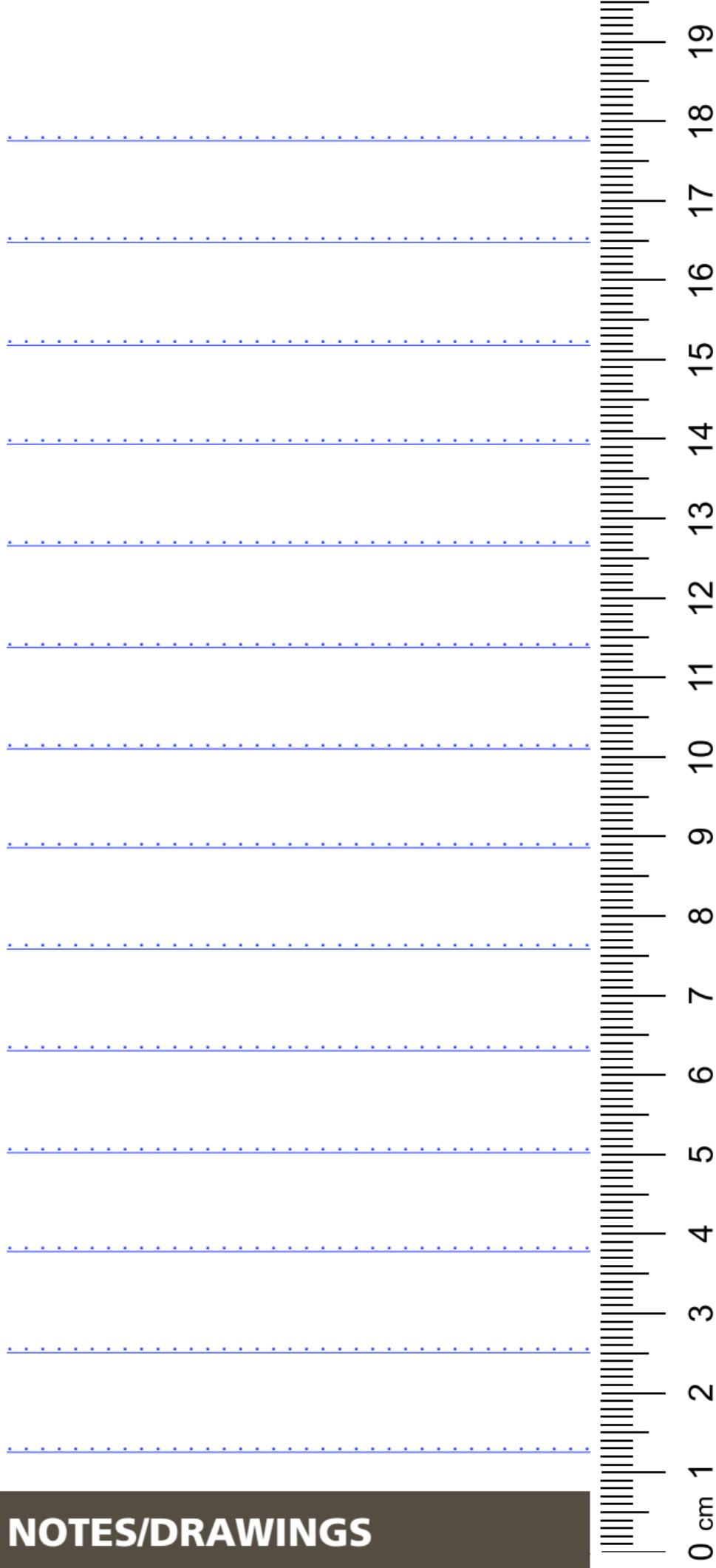
20. Santamour, F.S., Jr.; Riedel, L.G.H. 1993. Susceptibility of various landscape trees to root-knot nematodes. *Journal of Arboriculture*. 19(5): 257-259.

21. Sundin, G.W.; Demezas, D.H.; Bender, C.L. 1994. Genetic and plasmid diversity within natural populations of *Pseudomonas syringae* with various exposures to copper and streptomycin bactericides. *Applied and Environmental Microbiology*. 60(12): 4421-4431.  
<https://doi.org/10.1128/aem.60.12.4421-4431.1994>.

22. Swoczyna, T.; Kalaji, H.M.; Pietkiewicz, S. [and others]. 2010. Photosynthetic apparatus efficiency of eight tree taxa as an indicator of their tolerance to urban environments. *Dendrobiology*. 63: 65-75.  
<https://www.researchgate.net/publication/233834535>.

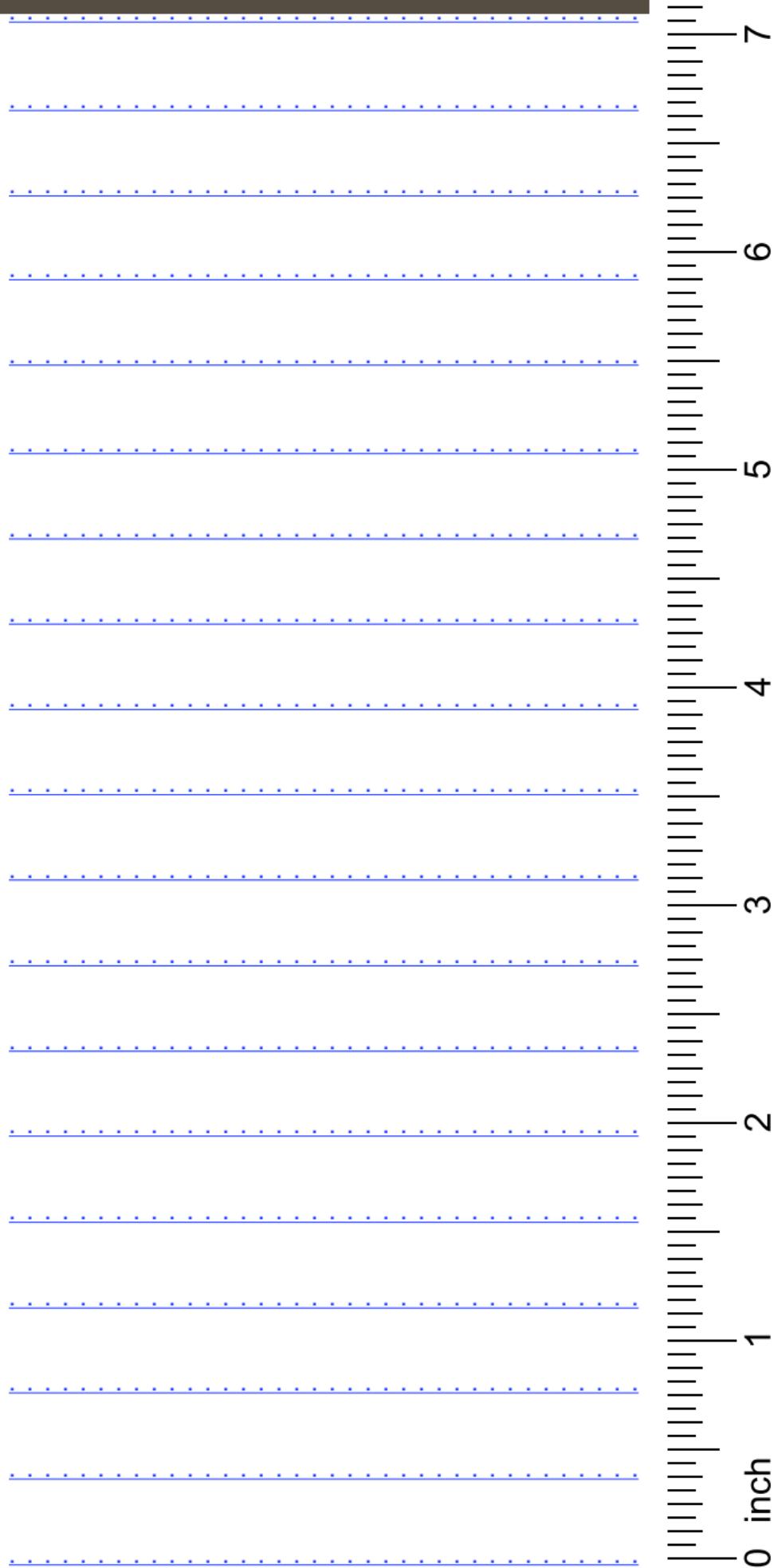
23. Vincent, M.A. 2005. On the spread and current distribution of *Pyrus calleryana* in the United States. *Castanea*. 70(1): 20-31. [https://doi.org/10.2179/0008-7475\(2005\)070\[0020:OT SACD\]2.0.CO;2](https://doi.org/10.2179/0008-7475(2005)070[0020:OT SACD]2.0.CO;2).

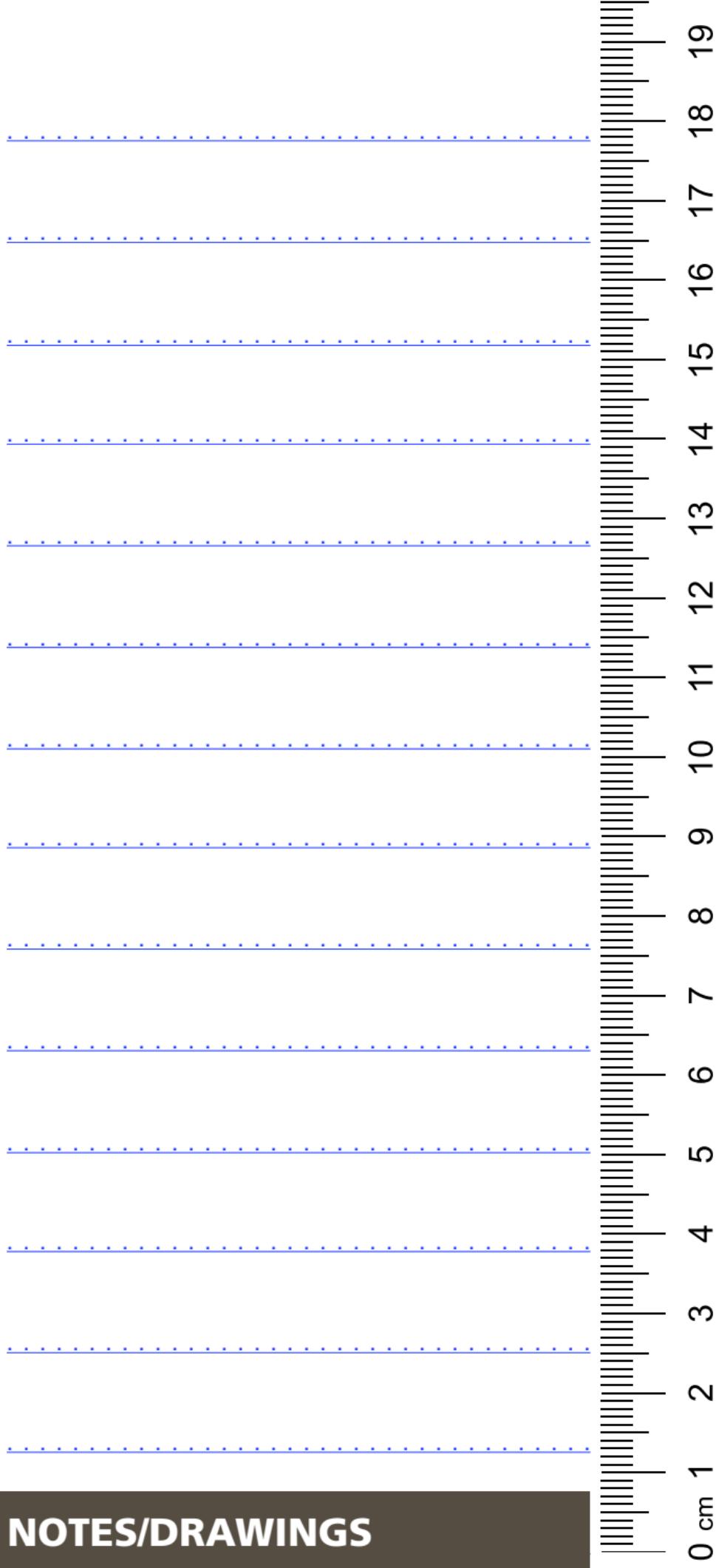
24. Westwood, M.N.; Bjornstad, H.O. 1971. Some fruit characteristics of interspecific hybrids and extent of self-sterility in *Pyrus*. *Bulletin of the Torrey Botanical Club*. 98(1): 22-24. <https://doi.org/10.2307/2483493>.


25. Zielinski, Q.B. 1965. Self-incompatibility of *Pyrus* species. *Bulletin of the Torrey Botanical Club*. 92(3): 219-220. <https://doi.org/10.2307/2483371>.

26. Zielinski, Q.B.; Thompson, M.M. 1967. Speciation in *Pyrus*: chromosome number and meiotic behavior. *Botanical Gazette*. 128(2): 109-112.  
<https://doi.org/10.1086/336386>.

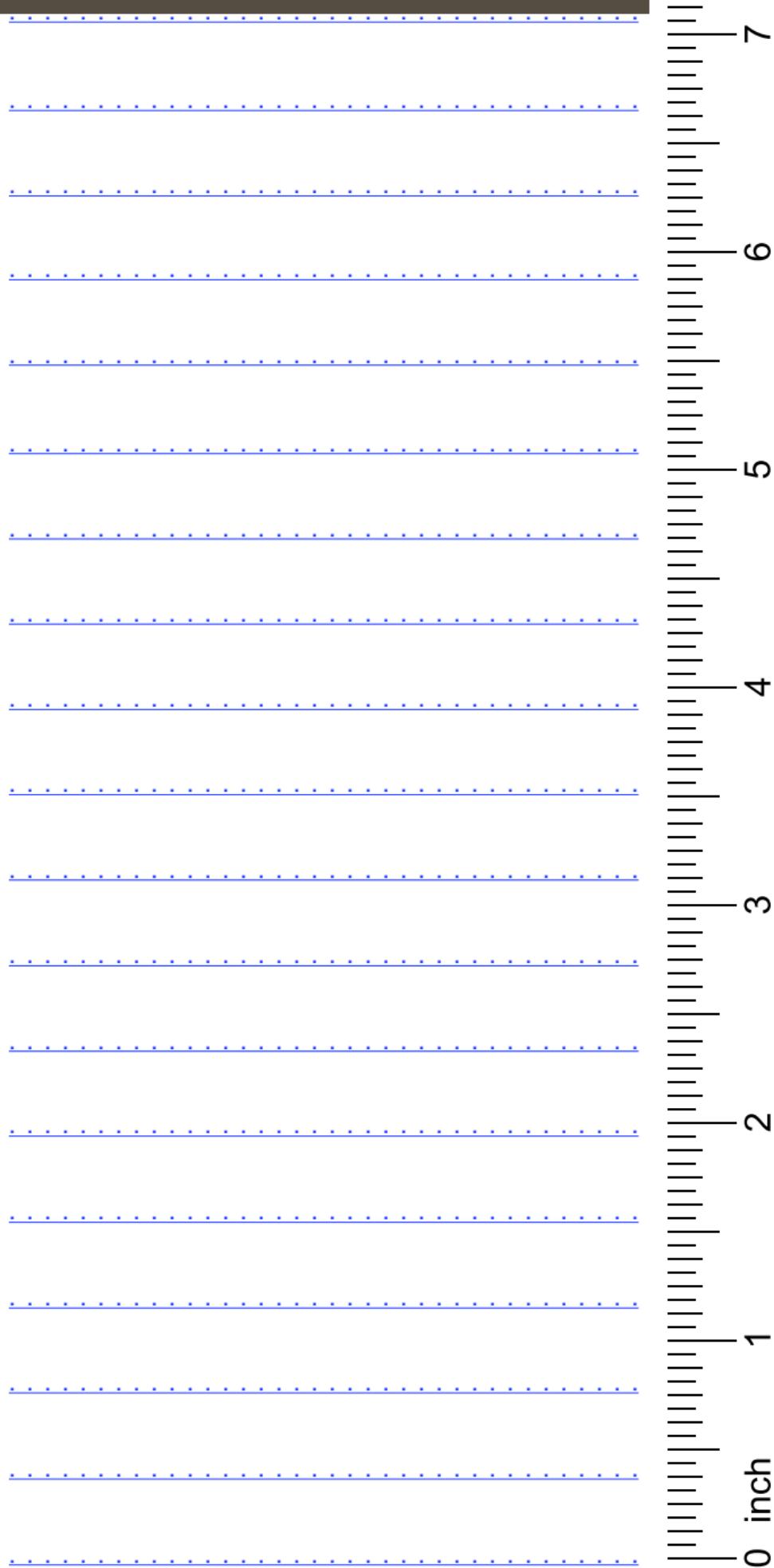
### Photograph Information:


Tree in bloom [UGA2308070]; Flowers [UGA2308072]; Dan Tenaglia, Missouriplants.com; Leaves [UGA2308098]; Fruit/leaves [UGA2308100]: Chuck Bargeron, University of Georgia. Photographs reproduced from [www.invasive.org](http://www.invasive.org).






**NOTES/DRAWINGS**


# NOTES/DRAWINGS





**NOTES/DRAWINGS**

# NOTES/DRAWINGS



In accordance with Federal civil rights law and U.S. Department of Agriculture (USDA) civil rights regulations and policies, the USDA, its Agencies, offices, and employees, and institutions participating in or administering USDA programs are prohibited from discriminating based on race, color, national origin, religion, sex, gender identity (including gender expression), sexual orientation, disability, age, marital status, family/parental status, income derived from a public assistance program, political beliefs, or reprisal or retaliation for prior civil rights activity, in any program or activity conducted or funded by USDA (not all bases apply to all programs). Remedies and complaint filing deadlines vary by program or incident.

Persons with disabilities who require alternative means of communication for program information (e.g., Braille, large print, audiotape, American Sign Language, etc.) should contact the responsible Agency or USDA's TARGET Center at (202) 720-2600 (voice and TTY) or contact USDA through the Federal Relay Service at (800) 877-8339. Additionally, program information may be made available in languages other than English.

To file a program discrimination complaint, complete the USDA Program Discrimination Complaint Form, AD-3027, found online at How to File a Program Discrimination Complaint (<https://www.usda.gov/oascr/how-to-file-a-program-discrimination-complaint>) and at any USDA office or write a letter addressed to USDA and provide in the letter all of the information requested in the form. To request a copy of the complaint form, call (866) 632-9992. Submit your completed form or letter to USDA by: (1) mail: U.S. Department of Agriculture, Office of the Assistant Secretary for Civil Rights, 1400 Independence Avenue, SW, Washington, D.C. 20250-9410; (2) fax: (202) 690-7442; or (3) email: [program.intake@usda.gov](mailto:program.intake@usda.gov).

USDA is an equal opportunity provider, employer, and lender.

